
“ +---
C3

--*’
--4
0

NATIONALADVISORYCOMMIITEE
FOR AERONAUTICS

TECHNICAL NOTE 4134

STALL PROPAGATIONIN A CASCADEOF AIRFOILS

By Athony R. Kriebel, Barry S, Seidel,
and Richard G. Schwind

Massachusetts Institute of Technology

Washington

June 1958



TECH LIBRARY KAFB, NM

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
Iillllllllllllill![l:lll[lllll

lJDbbilq

d

‘J

TECWCAL NO% 4134

WALL PROPAGATION IN A CASCADE OF AIRFOILS

By Anthony R. KYiebel, Barry S. Seidel,
and Richard G. Schwind

STJMMMY

An experimental investigation of stall propagation in a stationary
circular cascade in which high-speed schlieren and interferometer photog-
raphy is used is described. This investigation suggests an analytical
approach to the study of stall propagation which is valid only for an
isolated blade row in an infinite flow field but which is not restricted
to small unsteady perturbations or to an assumed simplified cascade
geometry. Conditions necessary for the existence of the assumed type of
stall cells are described and equations are derived for the velocity of
stall-cell propagation.

. The propagation velocities predicted for the theoretical potential-
flow model correlate with all the experimental values measured in an
isolated rotor within 15 percent.

*
Analysis of the flow model leads to the prediction of a tendency

for the assumed type of stall cell to split with increasing incidence
of the mean flow through the blade row. This tendency appears to corre-
late with the experimental observation of a trend for increasing numbers
of cells in the rotor.

The objective of the
herein is the development

—

INTRODUCTION

analytical and experimental work presented
of a theory which will enable the prediction

of the flow through a cascade of rigid airfoils, or an isolated blade
row of an axial compressor, when the incidence of the fluid on the air-
foils is high. It was discovered in the early days of British jet-
engine development that the flow can be unstable under these conditions
and that self-induced periodic disturbances on the fluw can develop.
The disturbances are caused by the propagation along the cascade, at
approximately the relative tangential component of main-stream velocity,
of regions where the flow is badly separated from the airfoils. These
regions where the blades are severely stalled are generally called stall*
cells. Stall-cell propagation in sxial compressors has continued to
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receive considerable attention since the pioneering analytical treatment
by Rmnons (ref. l) because of its importance as a cause of blade fatigue
failure.

The appearance of stall propagation in aircraft gas turbine engines
generally occurs in the early stages of the axial compressor during any
off-design operating condition in which these stages operate at inci-
dence much higher than design. This condition can arise because of
restriction of flow associated with engine acceleration or because of
operation at lower than the design value of reduced engine speed N/~.
Several mechanical devices are in use which tend to prevent the occur-
rence of rotating stall by lowering the incidence in the first few
stages during such off-design operation. However, there are weight pen-
alties and/or aerodynamic losses associated with these devices.

A satisfactory stall propagation theory might lead to (1) prevention
of unsteady flow ‘dueto stall propagation when the incidence of the mean
flow is high, (2) alteration of the stall-cell pattern and/or its veloc-
ity of propagation so that, for a given cascade geometry and mean flow,
the forcing frequency of the blade loading can be chosen by the designer,
or (3)prediction of enough information about the unsteady flow so that
blades canbe designed to withstand the unsteady aerodynamic loading.

However, before such a theozy can be achievedl it appears that more
facts must be known about the detailed nature of the flow during stall
propagation in a blade row than have a~eared in the literature. Experi-
ments were run in a radial-outflow circular--cascadeinstalled in a
closed-circuitwind tunnel in order to teke high-speed schlieren and
interferometerpictures of the flow through a portion of the cascade
during stall propagation. Further experiments were run with an isolated
rotor of an axial flow compressor. The data taken in these two test
rigs suggest certain approximations to the flow which aid in the subse-
quent analytical treatment of the problem.

The analysis of the general problem of stall propagation in axial
compressors is obviously difficult since an unsteady, rotational, three-
dimensional flow of a compressible fluid is involved. In order to retain
the essential features of the flow but to simplify the problem as much
as possible for analytical treatment, the flow is assumed to be two-
dimensional snd incompressible and to be limited to the case of an iso-
lated blade row. It is believed that further analysis of this problem
is necessary before the much more difficult””three-dimens+onqland multi-
stage flow problem can be successfui~ attacked.

There have been several analyses of the problem with the restricting
assumptions given above. (These analyses are given in refs. 1, 2, 3, and
4. A brief summary of each is presented in ref. 4.) The main reason
for attempting another analysis of the same problem is the fact that all
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of the known previous tQeor@ical work has been further restricted by
the assumption that the unsteady velocity perturbations are small with
respect to the mean flow velocity. From the experimental data presented
herein and in the references, this assumption does not appear to be a
good approximation; thus the present analysis is not restricted to small
unsteady perturbations. Moreover, the previous analyses have been based
upon rather restrictive representations of an isolated blade row, either
as a lifting line or as infinitesimally spaced flat plates; whereas, in
the present analysis, the chord, spacing, shape, and detailed stall
characteristics of the blades are not specified. Finally, none of the
theories, except that given in reference 4, ha,veoffered apparent physical
causes which determine the number of stall cells. The analytical flow
model used herein appears to present qualitative information in this
regard.

From information available at present, it appears
features of a stall propagation theory we predictions
cade geometry of:

that the desirable
for a given cas-

(1)

(2)

(3)

(4)

mean flow incidence at which stall propagation is possible

the number of stall cells

the velocity of stall-cell propagation
-——

the magnitude of unsteady aerodynamic forces on the airfoils

Such a theory is the goal toward which the work presented herein is
directed.

This report sumarizes the results of an investigation in which many
metiers of the M.I.T. Gas Turbine Laboratory staff have participated.

Profs. E. S. Taylor and A. H. Stenning guided the proJect. Prof. H. E.
Edgerton generously lent one of his experimental light sources and advised
in its use during the project. Prof. E. L. Mono-Christensen provided the
miniature piezoelectric crystal pressure pickup and advised in its use
during the project.

This investigation was conducted at the Massachusetts Tnstitute of
Technology under the sponsorship and with the financial assistance of
the National Advisory Committee for Aeronautics.
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SYMBOLS

discharge coefficient, Cos p+os PZiv

vortex spacing along stall cell downstream of blade row

number of stall cells

absolute velocity

static pressure coefficient of cascade, -
1W2~Pl

blade lift coefficient,
v 2

blade normal-force coefficient,
Aerodynamicc force normal to chord

1~ pwlz

frequency at-which each airfoil stalls

function of

incidence, B - A, G

definedby equation (7)

blade chord

length of cascade or circumference

Mach number

of rotor

length of stall cell in vortex spaces a

~=vicosg

‘%2
n width of stall cell downstream of blade row in vortex spaces a

P s r/r. a
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P

R

Re

r

s =

s

t

u

static pressure

radius of cylinder in picture plane, &

4

Reynolds number based on blade chord,
pm

T

radius; polar coordinate

Time mean PO - p

c

cascade blade spacing

ttie

rotor velocity at mean radius, we 1
for isolated rotor

u, v

v

Va

vi

‘P

VQ

w

x= ‘3
‘X2

Y

z

a

L

velocity components in x, y directions

transport velocity of vortex downstream of

velocity of vortex I’ along lines (b) and

velocity induced by stall cell, r/a

blade row

(c) in figure

velocity of stall propagation relative to blade row

absolute velocity of

velocity relative to

stall propagation, U - Vp

cascade or rotor

fraction of downstream periphery covered by stall cells,
na

1 Cos @

complex coordinate

angle of flow from
system

in physical plane, X+iy

axial direction in absolute coordinate

10
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P angle of flow from axial
to blade row

r strength of shed vortex

r. strength of bound vortex

cl

0

P

a
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direction in coordinate system fixed

complex coordinate in picture plane, g+iq

polar coordinate;blade camber angle

—

—

cascade stagger angle from blade chord to axial direction

density of fluid

cascade solidity, L/s

period with which stall cells pass a fixed point —

angle of stall cell from axial direction

velocity potential
.

complex conjugate

(0) =d( )/dt

Subscripts:

i inside stall cell

o stagnation point; outside stall cell

1 far upstream; upstream measuring station in circular cascade

2 far downstream; downstream measuring station in circular
cascade

C, E, F, FG, G, K measuring stations along axis of rotor shown in
figure 35

r radial component

x -d Cowonent (note) Cx = Wx)

Q tangential component
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IW!KGROUND

Conditions required for the existence of small-perturbation stall
propagation and a mechanism by which the stalling of rigid airfoils in
cascade can propagate have been clearly explained In references 1 and 4,
where the cascade is assumed to consist of infinitesimally spaced flat
plates of finite chord which stall at or near their trailing edges and
between which the flow is one-dimensional. It is apparent that, as is
described in these references, the diversion of flow around a stalled
airfoil tends to stall the adjacent airfoil on its suction side and to
unstall the opposite adjacent airfoil. However, in order to apply the
analysis of reference 4 to calculate the velocity of stall propagation,
it is necessary to know an “equivalent chord length” if the airfoils
do not stall locally at their trailing edges. In general, from the data
presented herein, it appears that the separation of the boundary layer
associated with stalling occurs more nearly at the airfoil leading edge
during stall propagation and that the flow in the blade passages is
rather far from one-dimensional for typical values of cascade solidity u.
It was further assumed in reference 4 that the performance of a blade,
that is, the “discharge coefficient A,” or blade boundary-layer dis-
placement thickness, was a function only of local incidence. A result
of the analysis based upon these assumptions was that the harmonics of
the s~ll perturbation traveled at different velocities and it became
necessery to restrict the velocity perturbation upstream of the cascade
to a pue sine wave in the analysis in order that it should maintain its
shape as it propagated. The sine-wave shape does not agree well with
experimental data, particularly for small numbers of cells.

In all the previous analyses, the equations of motion were solved
for the irrotational motion of the fluid upstreem of the cascade with
the cascade as a boundary and the cascade characteristicsappearing in
the boundary conditions. Since the time-dep~dent differential equa-
tions are nonlinear, the assumption of small unsteady perturbations was
necessary in order to linearize and solve the equations. Furthermore,
in order to make the boundary conditions continuous, it was necesssry
to restrict the cascade geometry to infinitesimal blade spacing. The
analyses based upon the assumption of small perturbations have yielded
valuable information about the qualitative nature of stall propagation.
Undoubtedly this asswnption is valid for the prediction of the onset of
propagation; however, its validity for the prediction of propagation
velocities of large smplitude perturbations appears uncertain.

In reference 3 an analysis based upon representation of the cascade
as a distributed vortex sheet (infinitesimalblade chord and spacing)
led to the prediction of infinite velocity of propagation for some values
of incidence umless an arbitrary “boundary layer phase lag” was included.
This difficulty did not arise in the analyses of references 2 and 4,
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where the assumption of infinitesimalblade ‘spacingwas made also. From
the analysis herein, where the two-dimensional flow between finitely
spaced airfoils is considered in representing the cascade during stall
propagation, it appears that the propagation velocity must be of the
same order of magnitude as the free-stream velocity evenif the boundary-
hayer phase lag of the airfoils is zero. As the dimensions of the cas-
cade shrink to zero, similitude requires that Vp remain finite. The

present analysis indicates also that the stall cells must be regions of
high losses and low stagnation pressure in a coordinate system fixed to
the stall.cell pattern, which is contrary tu--theassumption of constant
stagnation pressure in the section “Airfoil Theory” of reference 3.

Information derived from high-speed interferometerpictures of the
flow through a portion of a cascade during stall propagation s~gests ~
an analytical apprgach which does not necesst~ate the direct integra-
tion of the equations of motion, which is not limited to small.perturba-
tions, infinitesimalblade chord, or infinitesimalblade spacing, and
which does not require arbitrary assumptions regarding the location of
separation.of the boundary layer from the airfoil or the time required
for separation.

ANAIYSIS OF STALL PROPAGATION IN A BLADE ROW

Development of a Vortex Flow Model

Experimental and mathematical justification.- It is noted in the
interferometerpictures of rotating stall inja circular cascade (figs. 1
to 4) that the vorticity shed downstream from the cascade airfoils
appears to be concentrated largely in discrete vortices which accumulate
at and depart from the leading and trailing edges of the airfoils as
they periodically stall and unstall. Furthermore, the pictures indicate
that the airfoils shed a large part of their.bound votiicity when they
stall out. This appears to be true for all the circular cascade con-
figurations.,Reynolds numbers, and mch numbers tested. Exper*ntal .
data and calculations which support these conclusions and which suggest
that they may be valid also for the flow through a research compressor
assembled as an isolated rotor are presented .subsequently. In general,
the data suggest that the airfoils which werE:tested, both in the rotor
snd in cascade, shed vortices during stall propagation siq~l= to the
K&’m&n vortex street shed from a flat plate and that the vortices formed
in a manner-similar to the vortices formed at the eue of a flat plate
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moved impulsively from rest normal
analysis of reference 5.

However, the first suggestion
tion between stallpropagation and

to,surface of the”plate, as in the -.

that there might be a strong connec- *
vortex shading was in reference.1, ~ .._

\
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where it was observed e~erimentally that, ras the solidity of the circu-
lar cascade was reduced, the frequency of stall propagation approached

w’ the -n vortex-street frequency for an isolated plate as found e~eri -
menta~ in reference 6. Similar’data for a different configuration of
the circular cascade are shown in figure 5.

With the above eqerimental evidence as a basis, it is assumed thd
during stall propagation all the circulation downstream of the cascade
is about discrete potential vortices which are.shed frcmnthe airfoils
when they alter their circulation upon entering or leaving a stall cell.
The experimental evidence suggests that with this assmption, it should
be possible to devise a vortex flow model.of stall propagation in a
blade row where the vortex shed from the leading edge of a blade moves
across the passage and stalls the adJacent blade before moving on down-
stream with undiminished strength.

There are several advantages which arise from the fact that the
hypothetical flow model is irrotational except at discrete singularities.
The most important advantage is that the flow, even though it is unsteady,
is “kinematic;” that is, the equations of motion need not be integrated
to solve the flow, since the assumed conditions of irrotationality, con-
tinuity, and ticompressibilityalone are sufficient. This m,ybe shown
from the vector identity -.

V% = grad div V - ctil
*

The continuity equation,

dp
z +divpV=O

shows that div V = O since p is assumed
theorems ere not affected by time variation

curl v

constant. Stokes’ and Kelvin’s
of flow and are sufficient

to determine irrotationality. Since all vorticity is assued to be con- .
centrated at singular points and inside airfoil surfaces, Curlv=o
everywhere in the flow field because the singular points are excluded
frcmthe field. Consequently, V2V = O. Laplace’s equation is satisfied
at every instant of time, and the flow uy be built up by the superposi-
tion of the unsteady potential flows about the vortices which are assumed
to be shed from the airfoils and convected downstream.

If the effect of a single potential vortex upon the flow about an
isolated flat plate is studied, qualitative information is obtained which
is useful in the subsequent analysis of a complete cascade of airfoils.

Effect of a vortex on flow about a flat plate.- To find
of an adjacent potential vortex upon the circulation aboti a

. of chord L in stresming flow, the meth~ used in reference

.

the effect
flat plate
7 to estimate
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biplane wing interference is extended. The two-dimensional flow about
‘z

a circular cylinder which by the Joukowski transformation can.be altered
to the desired flow is first cons~dered.

Let ~ = ~ + iq be the complex coordinate
and f(~) be the complex potential of the flow
of the flow by the introduction of the circular

Then after the cylinder is introduced,by
ence 7, the complex potential is given by

w(~) =

()

f(~)+?~ -
16L

in the circular plane
before the “disttibance”
cylinder, 1~1=~.

the circular theorem of refer-

Sloge g
231

where ~ denotes the complex conjugate of f and I’o/2ytis the circu-
lation about the cylinder.

If (0 dWis a stagnation point on the cylinder, ~ = O when

. .
i’(~o)= Uo + iv” where u and v
in the “undisturbed flow,” that is,
Thus,

.2

= L2””
f’(~o) =% - ivo, and

~

are the velocity components at ~
before the cylinder is introduced.

.!

u.

()dW ()

L2 iroL2 ~, -—.f’(~o) -— 0
z [0

=
16(.2 16{0 2Yr(o

r&=
-icof’(co)+ ire?’(ro)

231

rQ=
2s

-i(go+ i~())(uo- ivo) + i(go -

ZQ. -2(~ovo - ~ouo)
27C

iqo)(uo+ ivo)

6

.
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Therefore,

11

J

Let
into

f -t

iq
~+ivo= qe , then ~
the above equation gives

- iv. = qe-i~ = f’(~o). Substituting

= 2 & q sin(eo - $)

where Vt is the velocity tangent to the circle at go in the undis-

turbed flow.

To apply the above result to an undisturbed flow consisting of a
uniform velocity W at the angle ~ and a potential vortex I’ at
(rl,0~), one takes the trailing edge of the cylinder to be a stagnation

point and places it at the origin; I’o/% gives the circulation required
to maintain the Kutta condition, and

L COS 91 ~r. = fiLWsin j3+
2r~

The equation above indicates that if the Kutta condition is satis-
fied the loci of the vortex I’ for constant cylinder circulation ro/2Yt
form a bipolar system of circles. When the Joukowski transformation is
applied to the flow, the cylinder becomes a flat plate of chord L and
the circles are transformed into curves which pass through the trailing
edge of the plate. The dashed curves in figure 6 are the loci of the

vortex r for constant plate circtition & w~ch is given by

r. =tiLWsin~+nr

I

if the Kutta condition is satisfied. The curve for n = O is labeled
the neutral line. When the vortex r is on the neutral line it induces
no velocity at the trailing edge of the plate and has no effect on the
cylinder circulation.
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The effect of plate camber may be esthnted by assuming the plate
to be a circular arc which transforms into a circle displaced froq the
origin as shown in reference 8 and indicated in figure 7. It can be
seen from figure 7 that, if e is the camber of the plate and if. e
is the displacement of the circle from the origin, then in the notation
of figure 7

R -2E= R COS :

‘i+)-*=: “tana

The solid curve in figure 6 is the neutral-line for a plate with camber
angle 0 z 30°e The displacement
ner in which the other curves are
camber.

From figure 6 it can be seen
of a plate, the plate circulation

v

w

.-

.

v
—

of the neutral line indicates the un-
displaced by the effect of phte -:- ,:

that if a vortex r is in the vicinity
is greatest when r is near the . . ~

trailing edge. Therefore, if a vortex I’ is shed from the leading edge
of one of a cascade of airfoils, the circulation about the adjacent air-
foil should go through a maximum value just after the vortex passes under
its trailing edge. Although this describes..theeffect of only one shed
vortex, figure 6 indicates that this is the dominating effect, since the
vortices shed from the other cascade airfoils do not approach the
trailing edge of the airfoil in question sor,closely. The effect of the “ ““-~
vorticity shed from the airfoil itself as its circulation ckmges is
neglected aLso in this simple quasi-steady analysis. However, it appe.&s “- ““
that one may conclude that there is little tendency for a cascade air-
foil to stall until the adjacent shed vortex approaches its tyail~g
edge. Since a certain amount of time is required for the shed vortex
to move to such a location, infinite propagation
even though the time required for boundary-layer
tion of vorticity is neglected.

velocity is precluded
separation and accumula-

= --

.
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This qualitative description of a mechanism by which stalling can
propagate along a cascade of airfoils indicates the direction in which
the stall will propagate and shows that the velocity of propagation must
be of the same order of magnitude as the free-stream velocity. Experi-
mental verification of the description appears in figures 1, 2, and 4.

Trajectory of a shed vortex.- With the effect of a vortex 1? on
plate circulation as determined in the previous section for quasi-steady
flow, it should be possible to estimate the velocity of stall propaga-
tion along a blade row if the trajectory of the shed vortex can be cal-
culated and a stall criterion can be established to determine when the
succeeding vortex is shed. Although difficulties are encountered which
appear to be insurmountable, the attempts mde to calculate the shed-
vortex trajectory are presented briefly so that these difficulties may
be pointed out and so that some qualitative information can be derived
which is used in the succeeding analysis.

In the first attempt, the cascade is assumed to be representedby
an infinite series of potential vortices as described in reference 9
where it was shown that the conjugate complex velocity vector given by
the geometry of figure 8 is

where z = reie =X+iy= Complex coordinate and u + iv = Complex
velocity vector. Values of the real and imaginsry parts of the function

()eiAcothgeiAx-L—
s Yrx

are tabulated for various values of ~ in reference 9. By plotting

these data into graphs, (U + iv) can be quicIC1.yCalcukted at any point
z = x in the field near a vortex street at arbitrary angle A, with
the vortex at the origin missing. If it is assumed that the vortex at
the origin is a free vortex, having been shed from its airfoil, its
trajectory can be calculated by a stepwise numerical procedure for a
flow geometry approximately the ssme as the experimental geometry of
figure 9.

If it is assumed further that blade (a) in figure 8 stalls when
the vortex is nearest the corresponding position in figure 9, the cal-

culated velocity of stall propagation is $=g. Similar results are
x

obtained when the calculation is made assting that alternate blades
stall simultaneously (which corresponds approximately to the stall-cell
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i?

pattern of.figure 9 for 16 stall cells and 27-blades), and the calculated
v

value for
8

is ~ about twice the experimental value. It is con.g~ k
x

eluded that this representation of the cascade is too simple to give
good numerical answers and that the effect of the presence of a blade

——.-

after its circulation is shed should be included in calculating the
trajectory of its shed vortex. This effect is to reduce the transport

—

velocity of the vortex when it is near the blade so as to give smaller
—

values for vp/wx. The neglected boundary-layer time delay further
reduces Vplwx“

In reference 10 expressions are derived for the path of a vortex
in streaming flow over a flat plate Wd for the transport velocity of
the vortex. It is shown that the path of a vortex near a flat-plate
is not simply the Joukowski transform of the--pathin the circular plane
but is given by the Routh stream function. For the case of one vortex
near a plate with no circulation, a finite-differencemethod could be
used to determine the time required for the vortex to move between
given points on its path. However, difficulty arises fYom the fact
that when the vortex is near the plate, just after being shed, the
assumption of potential flow gives very erroneous results. Near the
plate, the calculated transport velocity vector of the vortex becomes
infinitely large and points in an upstream direction. Therefore, the
initial point of the vortex trajectory cannot be taken near the leading
edge of the airfoil, and the calculation must be started from some
point away from the airfoil surface. The shape of the trajectory and
the time required for the vortex to be convected downstream is found -..
.to depend critically upon the initial point c_tisen..The location of”.
the initial point and the time required for the vorticity to be shed
from the airfoil surface and to accumulate at this point is determined
for a special casein”reference 5, but the method used appears to be
too involved for the problem at hand.

—

——

-.-=
—

Examination of the expressions derived in reference 10 indicates
that near the platethe shed vortex moves downstream more slowly than

—

when it is--awayfrom the-plate. This information is used in the sub- 7

sequent afilysis, which circumvents the difficulties mentioned above
and which MA been-devised to deal with the problem of the convection ...
of a series of vortices shed from a cascade Df airfoils.

Analysis of a Vortex Flow Model of Stall Propagation

Derivation of expressions for propagation velocity.- Velocity meas-
urements taken during stall propagation indicate that for a given oper-
ating condition or mean flow, the unsteady velocity perturbation trans-
lates at constant velocity Vp along the cascade, and to a first +“

.
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approximation, the shape of the velocity profile of the unsteady
turbation is mintained constant. In other analyses, previously

15

per-
men-

tioned, it was assumed that the profile is constht,”a~d it is &o
assumed to be constant here, although data which will be presented sub-
sequently indicate that this is not always strictly true. With the
approximation that each cascade airfoil sheds a discrete potential
vortex 17 when it enters the stall cell and another -r of ovposite
sign when it leaves the
vortices (of sane sign)
lates of the same curve
the cascade.

The vortices which

cell, it follows that all the trajecto~~es of
shed fYom the cascade airfoils must be trans-
and separated by the blade spacing s along

have been shed downstream must be arranged in a
pattern as shown in figure 10. The dashed lines indicate the trajec-
tories of the vortices shed from two succeeding blades. The I’ vortices
must lie on a line (b) which eventually becomes straight downstream of
the cascade and the -r vortices must be located along a line (c) which
becomes straight and parallel to line (b) downstream of the cascade.
The region between lines (b) and (c) is called the stall cell. Lines (b)
and (c) are of constant shape in time and move relative to the cascade
with the velocity of propagation Vp.

In a coordinate system which is fixed to the stall cell, the blades
move down (fig. 10) with velocity Vp, and the shed vortices move down-
stream along the stationary path lines (b) and (c). The flow is steady
in time except for the effects due to the finite spacing of blades and
shed vortices. It canbe seen from equation (1) that these =e local
effects confined to an area within approximately one blade spacing of
the cascade and one vortex spacing of lines (b) and (c). Flow is diverted
to each side of the stall cell which has the nature of a thick wave.

After they are far downstream of the cascade, the shed vortices
are spaced uniformly by a distance a along lines (b) and (c) and move
with transport velocity V. The symbol @ is definedas the angle
between each street and the cascade axis, and n is defined as the
number of vortex
In figure 11 are
stall cell. The
is W2 plus the

velocity induced

spaces between the streets as indicated in figure 10.
indicated the velocity triangles associated with the
velocity at any point far downstream of the cascade
induced velocity due to the stall cell (which is the

by two infinite vortex streets).

If the
strength of

blades stall out completely when
the shed vortices wi-~ be.~f the

~=

( )
Wel -w02 s

they enter the cell, the
order of magnitude
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From reference 11, for a single infinite row of equidistant vor-
tices, each of strength I’ (plus clockwise) at distances a apart,
with the origin at a vortex and the axis of x along the row, the
velocity components induced by the vortices are

r
u =—

2a

rv =—
2a

and one may calculate the
as follows:

sinh(23ry/a)

cosh(2fiy/a)- cos(2fix/a)

1

(1)

sin(2fix/a)
cosh(2fiy/a)- cos(2ycx/a)

maxtium value of v for y . Constant + O

r%——
1(
cosh ~

) . ~
- .0s ~ .0s ~ - sin2 ~

av= 2a a

Posh(2fiy/a)- cos(2&/al 2
L —. A

l_jin(tix/ajl2+ ~os(27rx/a)] 2.1—

cosh~cos ~-1= O

.=-
Sin 2’ITX

v

P-

*

●

—
—.

—

. .-

—. —

= tanh ~
a

.—

.
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r
‘Max = 2a sinh(2~/a)

Therefore, far downstream, the maximum lateral velocity (normal to
lines (b) and (c)) that the vortex streets can induce on each other is

r
‘H = 2a sinh 23m

where na is the distance between lines (b) and (c). If n >1

and may be neglected.

The basis for taking n > 1 is derived from the hot-wire data
taken downstream of the isolated rotor where it is noted that the cells
always cover at least two blade spaces. This appears to be true, in
general, for stall cells in rotors. In the interferometer pictures

. from the circular cascade, figures 12, 2, and 1, it is noted that n 2 1;
however, the downstream flow field extends only 2 or ~ blade chords from
the circular cascade, so that the initial assumption of an infinite down-

● stream field is not valid for the circular cascade.

More than a distance a from the vortex streets the longitudinal
velocity induced by them may be neglected outside the cell, while inside
the cell, from equation (l), Vi =J7/a.

The resultant transport velocity of each downstream vortex is V
as shown in figure 11. Solving for the velocity of propagation Vp

from figure 10 gives

(2)

This same result can be obtained easily by noting the parallelogram
in the velocity diagram of figure 11 and solving for the eqyal and oppo-

. site side from V .P One advantage of the assumed vortex flow model is

.
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that Vp can be calculated away from

the detailed nature of the flow in or

NACA TN 4134

.
the cascade without solving for
near the cascade except insofar

as this affects the angle @.” It is observed that Vn and the angle @
E’

are uniquely dependent if the downstream velocity W2” is given and if .

n>l. The velocity of propagation ‘P does not depend explicitly on

the physical size or shape of the stall cell or on the magnitude of the
velocity perturbation. Since the angle @ has been observed experi-
mentally to be small in many cases, equation (2) indicates that the
fair experimental agreement between ‘P

and W92 which has been noted —

by other observers is an immediate consequence. However, in the analy-
sis to follow, no assumptions regarding the angle @ are made.

To continue the analysis, the following variables are defined:

~=vicos$
.-
‘%2

P -r/r. s

wX=xl
‘X2

Shed vorticity

Bound vorticity

Y = fraction of downstream periphery covered by stall cell,
na/cos g

z

The circulation around a blade away from the cell is given by

(
170=sWe1-We

2)
(3)

Then,

Pro p
v~=c=—=

( )
MX2

.5We1-We2 =—
a a a Cos $

(k)

.

b-

and ~ . N
a

(
PXtan~l- tan ~2)cos @“

.

.
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The time-average continuity equation gives

‘w”=t -5JW’2+=J”’2‘Vices‘)\
x-1=

x=l -

Solving from figure
along lines (b) and

Y(l-N)-Y

YN J
11 for the velocity with which the vortices move
(c) gives

“2 ‘iva= —-—
Cos 9 2

Since the frequency with which vortices pass downstream points on
lines (b) and (c) must be the same as
are shed onto the lines,

w02-w&an$3
s—= 5=
a Va “2 -~

Cos fl 2

Eliminating s/a from equations

(tan ~2 - tan @)cos2#

From the velocity diagram for an
seen that

19

(5)

the frequency with which vortices

(
tan ~2 - tan @)cos @

(6)

1: -—

(4) and (6) gives

N - (N2/2)= . SK (7)

(P X tan ~1 - tan p4

isolated rotor in figure 13 it can be

tan !32=tana2

( 1=0)”for an isolated rotor with no upstream whirl velocity Ce

It is noted that since the shed vortices are convected downstream.
N<2. Also, the range of P mustbelimitedto O<P<l.
of K versus

(
N for PXtan B1- t~ Q assumed constant

Olas. Curves of K versus tan $ for p2 assumed constant

straight for tan @ > -0.2, as shown in f@ure 14, which is a

.

The cur$es
are parab-

are almost

plot of



20

K against tan ~ for

for the isolated rotor
500.)

NACA TN 4134

P2 = 30° and 50°. (Experimentalvalues of 132

from which data were taken fall between 30° and
‘?

A diagram of K plotted against N and K plotted against tan $
with the intercepts and peaks labeled is shown in figure 15. It is indi-
cated that for a given value of K there are either two or zero solutions
for the angle @ (and Vp). However, soltitionswhich are physically
possible appear to lie on the positive si~e of the peak of the curve of
K against tan ~, (tan @ > tan !32- sec 132 in fig. 15), sin= experi- —
mental values of @ presented herein fall between -15° and 19° and
since all known e~erimental nlues of Vp are less than Wel. Quali- -

tative reasoning based on the results given in the section entitled
,.

“Effect of a Vortex on Flow About a Flat Plate” indicates that a blade
—

has little tendency to begin to stall until the vortex shed from the
.-
—

preceding blade approaches the trailing edge. Since time s/vp is

required for the vortex to be formed and shed from a blade and to
approach the trailing edge of the succeecl~ngblade when it begins to
stall, s/vp is also the time required for the vortex”to move from

points (1) to (2) in figure 10. Since it..hasbeen shown that the veloc-
ity of the shed vortex is less when it is near the blade than when it
is downstream (for an isohted blade and vortex) and since there is a .

boundary-layer time delay required for the vortex to be formed, it
would appear that large negative values for @ are impossible for typi-
cal cascade geometries. This precludes the possibility of infinite
propagation velocity, since from eqution. (2) for Vp+mj $j+-goo ~“
For the reasons above, only the solution #3iviW the s~ller value of” #
and Vp < Wel (as indicated in fig. 15) will be retained.

Therefore, tan ~2 - sec 132< t~ @ < tan i32 and K plotted

against tan @ canbe roughly approximated by a straight line which
passes through the intercepts tan j32,O and (O, tan ~2). It canbe

seen from the gecnnetryof figure 15 tht wit~n this approx~tion

N - (N2/2)

(
= p Xtan PI -_tan ~2)

(8)

or, for an isolated rotor,

.
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‘Ldkl!m.
ce2 P tan2ct2

If N ~ 1, there is small net axial flow through the blades in the stall
cell since lines (b) and (c) in figure 10 are path lines and the mass
flow into the cell through the blades must be equal to the axial flow
in the cell downstream. It is assumed that the blades in the stall cell
must lose most of their circulation if N ~ 1 and, as a result P ~ 1.

Experimental values of N appesr to be close enough to unity to
assume that N = 1, since the variation of K with N is small for

-.

values of N near unity as shown in figure 17 (if 3/4 < N < 1, then

0.47< ~
tan ~ )

< 0.50 .

For an isolated rotor

becomes

Equation (9) is based
against tan @ is linesr.

Ce1
=0 and for P=N= I equation (8)

Lz Cot%@

%2 2
I

(9)

upon the approximation that K plotted
However, if P = N = 1, equation (7) canbe

s~lved for tan @ explicitly without recourse to this

If P=N= 1, eq~tion (7) becomes

1 + tan2@tan~2 -tan@=
2(Xtan ~~ - tan 92)

o = tan%+ 2(Xtan ~1 - tan @2)tan @+ 1 - 2 tan 132(X

approximateon.

tan j31- tan ~2
)
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[(
.,

-2 -
,.-

X tan ~1 - tan P2
)

1 + 2 tan ~2(X tan P1 - tan ~2~ 1/2
—

g?

=tanp2-
[

Xtanf31f(Xtanpl-
) -)1tanF2(xtanP1+t=p2-~1/2

The plus sign for
implies that tan

‘P—=tanpl
Wxl

Therefore,

the radical

—.

——..- . ... ..

X43an2~1 - tan2~2 - 1
.-

‘- ‘1”)- -
in equation (10) is discarded since it .

@ < tan ~2 - sec ~2 and Vp > Wel.

F(T “-”“-2
x–

VP -1-1-Z

%1 %1
(11) “

For an isolated rotor,

/7~=~-’22
u %1

since Wel = U, and VQ = U - Vp.

If it is assumed that the flow outside the stall cell is loss free
and that an isentropic pressure coefficient ~ may be used outside the

stall cell, then “

.
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Therefore,

v~

X2(1 - Cp) =

substituting in equation

~=tanpl-,?’

Equations (11) and

(
assumed P = M = 1

ody if W2 < Welj

If W2 = Wel>

1 + tan2~2

1 + tan~pl

(10) gives

i
tan2~1 - (1 - Cp) - tan2fll+ Cp tan2~l

.-

(12)
Vp
—=tan~l -

i

P2 -PI-l

wx~ ~ PWX12

(12) indicate that for stall cells of the type
and O < VP < Wel

)
real values of Vp are possible

Cp> c0s2~l, smd fll>45°.

then Vp =Wel, tan # = tan ~2 - sec @2, as indi-

cated in figure 15, and Cp = COS291. It is interesting to note that

this corresponds to the propagation velocity predicted in reference 4
for a simplified cascade geometry and an entirely different type of
stall cell, where the upstresm velocity perturbation was assumed to be
a sine wave of small smplitude and ninnyblade chords wave length. In
reference 4, for this type of cell, it was shown that

#

Wxl sin 2~1
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If Cp= Coszpl, -.

where Vp = Wel. The preceding analysis indicates that this is a

limiting value and that, for the assumed t~e of finite-amplitudestall “-
cells to exist, Cp> COS2P1.

It is assumed in the preceding analysis that all the downstream
circulation is about concentratedvortices. The implication is that
the wakes shed from the blades outside the cell are thin enough or mix
soon enough to be neglected and that this is also true for the blade
wakes in the cell.(or that the velocity through the blades In the cell
is small enough for the vorticity shed inside the cell to be neglected).
The assumption of P = 1, together with that above, implies that the
blades outside the cell have no drag and those inside the”cell have no ““

-. .

lift. It is assumed that the analysis is valid for more than one cell
—

if they are spaced far enough apsrt so that equation (3) remains valid, .-

since the cells induce no velocity on each other except for their block-
age effect on the min flow which is considered in the analysis.

Since in a coordinate system fixed to the stall-cell pattern of
figure 10, the flow is steady and the streamlines are straight and ~–

parallel downstream, the static pressure is constant downstream. There
is a “head loss” in the stall cell determinedly the velocity defect —

there, just as in the case of a bluff body w-e; and the fraction of
the downstream periphery covered by stall cells could be expressedby
a time average loss coefficient of stagnation pressure. The qualita-
tive nature of the flow for (P = N = 1) is similar to the flow about a“”

—

flat plate translating along the cascade at velocity Vn and blocking —
the flow through a portion of it.

Analysis of Model for Small

It is noted that equation (7) gives a

___

Perturbations

relationship between the
three parameters (P, N,-and @ and %s developed without any assumptions
regarding blade stall characteristicsother than the assu@ion of dis-
crete vortices downstream. If another independent equation can be
derived between P, N, and #, by specifying the dynamic blade stall
characteristics, Vp can be determined as a function of N only or of

the stall-cell amplitude.

.
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For small perturbations, M and N ~n be
coefficients since for an isolated airfoil

The assumption

airfoils r. =

Lift = pwro= $ pw%cL

ro=~wL
T

25

related to lift and

is tie, as in reference 3, that also for a cascade of

CLWL where W is the local mean velocity and I’. isT 9

the bound vortic~ty at an airfoil. If CL is a known function of local

mean air angle j3 as determined by the local incidence, M(N,@) can
be determined independently of equation (7).

It is difficult to determine W and 13 at the airfoils near the
stall cell for arbitrary values of N because the shape of lines (b)
and (c) in figure 10 must be known. However, if N<< 1, lines (b)
and (c) must be straight even neu the casc~e~ and it becomes Possible
to determine W and ~ by restricting the amplitude of the stall cell
to a small perturbation.

For the velocity induced by a straight vortex street of finite
length, equation (1) indicates that, except in the immediate vicinity
of the street, it may be considered as a distributed sheet of strength

r therefore, with the notation of figure 16, theper unit length ~;
—-

velocity components induced by an element of length dx me

r -Sfnedu=-——
2sa r

(iv. L@cose
27car

For a sheet of finite length, as in figure17,

( )
--& tan-l ~ - tan-l ~
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J’r.x2Xti
[“

.-
V =— -L loge(x# + yp) - ~oge(x12+ ~2jJ

2tia q x2+y2 ksa — —

(13)

It follo-s that the velocity induced at the blade in the center of the
stall cell Vie, as shown in figure 18, is parallel to the streets and

equal to r if m >> n. For various assumptions of CL(P), it mightE
be assumed that the blades in the stall cell have a circulation corre-
sponding to W and ~ at the blade in the center of the cell and Vp

can be calculated as a function of N.

However, values of P which correspond to values of N as deter-
mined by the dynamic stall characteristics of the airfoil restrict the
curve of K against N to an “operating line” similar to the dashed”
curve of figure 15. As N+ 0, P+ O afidequation (8) becomes indeter-
minate. However, if it is assumed that @ must remain small as I?+O
for the reasons given previously, then from equation (7) P ~2N<< 1.
It appears, therefore, that for small perturbations, and small angles ~,
the percentage of vorticity the airfoils shed upon entering a stall cell
must be approx@ately equal to the percentage of downstream axial veloc-
ity defect in the stall cell. Therefore, the reason that small-
perturbation stall cells are not comnonly observed may be that a com-
pressor blade generally is thin, stalls from its leading edge during
stall propagation, and must shed a large percentage of its bound vor-
ticity upon stalling. This description a~pears to apply to the dynamic
stall characteristics of the airfoils used in the experiments although
in q~si-steady flow the airfoils exhibit a continuous curve of CL

against i even in stall as indicatedby figures 19 to 22. It is shown
in the section entitled “Determination of Flow Properties From
Interferograms” that the airfoils display stall characteristicsduring
stall propagation which depart considerably from their quasi-steady
stall characteristics. It is felt that th% sudden increase of i as
the airfoils enter a stall cell causes them to stall abruptly from
their leading edges for the reason given in the section entitled
“Correlation of Analytical and Experimental Results,” even though they
stall “gently” with a slow (quasi-steady) increase of i.

.
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A qualitative reason that a compressor blade should not shed a
\ small vortex from its leading edge during stall propagation is indicateda

in reference 5 where it is shown that, for a flat plate moved impul-
sively from rest normal to its plane, vortices must form at the edges
of the plate (if infinite velocity is precluded) and that, during the
initial formation of these edge vortices, similitude of the flow
requires them to grow until they are not small in proportion to the
width of the plate. Of course, the stronger the vortex shed from a
cascade blade, the greater is the tendency for the adjacent blade to
stall as the vortex moves past it and the greater is the tendency for
stall propagation; however, there iS no apyrent reason WhY Propagation
of s-11 perturbations should not occur except that this appears to be
precluded by the dynamic stall characteristics of the airfoils.

Since small-perturbation stall cells which are two-dimensional (hub
to tip in a rotor) and stable have never been observed experimentally to
the knowledge of the author, the analysis is pursued no further. The
discussion above is offered as a qualitative speculation (not an attempt
to prove) that for two-dimensional stall cells large perturbations are
more likely to occur as a stable flow pattern than small perturbations.

Prediction of a trend for the nuder of cells.- The vortex-flow
model used in the analysis appears to offer an expknation for the gen-
eral trend towsrd larger numbers of cells with increasing throttling of
flow as indicatedby the experimental data. The experimental results
indicate that with further throttling of the flow throughan isolated
rotor after the formation of one stall cell the cell first grew wider
(n increased in fig. 10), then two cells appeared and grew wider,
and so forth until four cells appeared and surging flow began. The
vortex flow model indicates that if m is finite in figure 18, the
velocity induced by the stall cell at the blade in the center of the
ceu, (V~)c, decreases as n/m increases. This effect can be shown

qualitatively by assting the lines (b) and (c) to be entirely straight.
Then from equation (13), if m >>n

As n/m increases, (vi)c decreases faster tmn ne~ the e~es of the

cell, there is more flow through-the center of the cell than near the
edges, and the blade at the center of the cell ten~ to ~sta~~ thereby

—

splitting the ce~ into two cells which become distributed ax.isymetri-
cally sround the rotor.

It does not appear possible to predict when a sta~”cel.l till split
as n/m increases without detailed information regarding the dynsmic
stall-unstall characteristics of the airfoils and the shape of the cell
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(lines (b)~~~ (c) In fig. 10). The estimated relationship between
n/m and “ ~ does not indicate much effect on (Vi)c until

n/m > 1/30 The measured effect is much greater and is described”
subsequently.

Sunmary of Analysis

By making use of experimental data in order to develop a simplified
analytical flow model, a theory of stall propagation in an isolated
blade row has been developed which appears to be based upon fewer “
restrictive assumptions than some of the earlier analyses. In the anai.y-
sis of the present paper, a restriction is_imposed upon the nature af the
stall cells. Although the approximation to the act~l observed flows
appears to be valid for all the blading, geometrical configurations,“&d
flow conditions for which the experiments described herein were run, it
is unknown how valid the approximation is in general. It is speculated
that the approximation regarding the nature of the cells might be widely
applicable to continuous cascades of thin airfoils where the flow extends
many blade chords downstream of the cascade.

It should be noted that in the preceding analysis no proof of exist-
ence, equilibrium, or stability is given for the assumed flow model.
The experimental data are offered in lieu ~f mathematical proof.

EXPERIMENTAL INVESTIGATION OF ROTATING STALL

Investigation in a Circulm? Cascade

Description of apparatus and procedure.- With the sponsorship of
the NACA, a circular radial-outflow cascade was designed and installed
in the closed-circuit wind tunnel at the Gas Turbine Laboratory during
1953. The cascade was designed specifically for investigation of rotating
stall and is described in detail in reference 12. In figure 23 is shown ..... — ~
a schematic view of the test section which includes a ring of variable-
smgle guide vanes with which the air inlet angle to the test cascade ~1 ““ -

can be continuously varied. Scme dimensions of the test cascade are:

Radius to guide vane trailing edges
(Varies withpl), in. . . . . . . . . . . . . . . . . . . 7.2t06.7 -

Radius to blade leading edges and meas:min~ stations 1
and 2, respectively:
For configurationA, in. . . . . . . . . . . . . . 7.91, 7.69, 8.94
For configuration B,in. . . . . . . . . . . . . . 8.66, 8.44, 9.69

—.
z“

.
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Blade chord, in....... . . . . . . . . . . . ..O. . . 0.%

Blade span, in....... . . . . . . . . . . . . . . . . . 1.71

Blade profile NACA 65(I2)1o as changed by circular
transformation
Nmnberofblades. . . . . . . . . . . . . . . . . . 54, 27, 18, 9
Nominal solidifies, u . . . . . . . . . . . . . . . I, 1/2, 1/3, 1/6

Simulated linear cascade 65(8)10
Mean line a. . . . . . . . . . . . . . . . . . . . . .0 . 1.0

Some advantages of the cascade geometry are:

(1) The flow is two-dimensional through the cascade neglecting the
wall boundary layers.

(2) Optical measurement of the flow through a portion of the cas-
cade is possible.

(3) A continuously rotating stall pattern can be established, which
is not possible for a finite-length linear cascade.

Some disadvantages are:

(1] Because of the radial flow, the pressure distribution about
the airfoils is not precisely the same for a given pressure rise through
the cascade as in a rotor or linear cascade. As described in reference 12,
a correction was made for this effect by designing the cascade through
the conformal transformation of one linear cascade so that the adverse
pressure gradient on the suction side of the airfoils in the transformed
circular cascade was approximately equal to that for a second linear cas-
cade which was sim~”ted. It was found that the circular transformation
of a linear NACA 65(w)1o cascade gave approximately the ss.meadverse
pressure gradient on the cticulsr cascade blades at the design point as
was obtained for a linear NACA 65(8)10cascade. The data for the linesr-
cascade pressure distributions were taken from reference 13. The degree
of success of this procedure is indicated in the section “Determination
of Flow Properties From Interferograms” where the pressure distribution
about the circular-cascadeblades is calculated and compared with the
distributions from reference 13 for one value of i.

(2) The flow field downstream of the cascade is necessarily rather
short which appears to have a pronounced effect on the rotating stall
cell pattern as discussed in the section “Correlation of Analytical and
~erimental Results.”
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In reference 4, an e@erimental investigationof rotati~ stall
in the circular cascade is described, which was conducted to determine
the detailed nature of the flow and’to ascertain the effects of ~ch
number, Reynolds nuniber,mean incidence, and cascade solidity on the
propagation of stall cells in the cascade. The experimentalwork
described herein Is a coritinuatioriof”this investigation. The proce-
dures and instrumentationare largely the same as those described in
reference 4 except for the use of the Gas Turbine Laboratory portable
Mach-Zebnder interferometerand a p~ezoelect~ic c~stil”pressure pickup
described subsequently.

The purpose of the.present l.nvestigation_isto extend the data of
reference 4 to include the effects of lower &ascade-s~aggera~le, of
higher mean incidence to the cascade, and of increased clearance between
the guide yanes and test cascade. Quantitativemeasurement of the pres-
sure field.in a portion of the cascade during stall propagation is also
attempted by means of high-frequency interferometerpictures.

All of the tests in reference 4 were made with a cascade stagger
aigle A fixed at 43°. The highest angle to which the guide vanes
could be turned gave an entering air amgle ~“1 to the cascade of 690;

therefore, the highest mean-flow incidence angle i possible was 26°.
Stall propagation started at i . 20°. In reference 14, it was observed
that stall propagation existed in a rotor-plus-guide-vaneaxial compressor
stage for 34° < i < 47° (relativeto the rotor”at meti radius). There-
fore, it was deemed desirable to alter the linkages to the guide vanes
to permit greater incidence to the circular cascade. It was noted in
the schlieren pictures presented in reference 4 that, during stall prop-
agation in the circular cascade, when an airfoil stalled some of the
fluid from the separated boundary layer was washed around the leading
edge of the succeeding airfoil before it stalled. In hope of decreasing
this effect and in order to incr&ase further-the incidence on the cas-
cade airfoils and to observe any other effects on the nature of the flow,
the stagger angle of the cascade was changed from 43° to 31°. For”the
altered guide-vane linkages and reduced stagger angle, the range of i
was from 13° to 53°0 With these two alterations,.thefollowing data,
similar to those presented in reference 4, were taken at the reduced
stagger angle and over a greater range of incidence during stall
propagation.

Throughout the investigation in a.cir.cu@r casc@e, ~ is defined

as the ratio of time-average static.pressure=rise through the cascade

to the dynamic pressure of the flow entering P2 -Pl.
where p2 and

~ P1W12’

pl sre,till.@ati.c pr.ess~es as rneas,~edby the:average“ofthree equally
:::” ,. ;:’:.--l .,. -
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spaced taps at measuring station 2 and three at station 1. It was deter-
mined that each of the botitiry layers on the cascade walls was ~ess
than 1/8 inch thick before the onset of stall propagation and they are
neglected henceforth.

In all the series of schlieren and interferometer photographs such
as figures 1 and 2, time is fr,omright toleft. Flow is from left to
right in each frame. All the schlieren photographs were taken at 5,000
per second and all the interferometer photographs at 6,OOO per second.

Experimental results - configuration A.- Pressure coefficient ~

as a function of ~1 for cascade solidity of unity is shown in figure 19

for two levels of Reynolds nuniber Rel. The conventional (Cp)m is at

P1 = 46° in figure 19. Subsequent hot-wire data and schlieren pictures

indicate that periodic stall propagation occurred at the peaks in the
curve where P1 was 540, 62°, and 68° and where values of @l were

greater than 79°. On,each side of the peaks the stall cells gradually
became intermittent and of lower amplitude, and between the peaks the
flow was relatively steady in time. Visual observation of the flow
through the scblieren apparatus for values of ~1 between the pems of

figure 19 showed that the flow was completely separated from the suction
side of the airfoils.

As 131 was varied, the mass flow through the test section was held

approxhately constant; therefore, Reynolds nuriierand Mach number
increase with 131 for each curve plotted, as indicated in fi~ure 19.

It is noted in figure 19 that there was a distinct effect on ~
caused %y change of Reynolds number for 58° < P1 < 74°. At the lower

Reynolds numbers propagation no longer occurred at the band of F1 cen-

tered at 62° and the band at 68° becsme narrower. When the Reynolds .
number was decreased to 50,0~ both of these bands disappeared, but-
propagation at the 54° band became more violent and periodic, and the
band at 79° was not affected noticeably.

Schlieren photographs of the flow were taken in each of the bands
of ~1 for which there was stall propagation. The same equipment was
used as in reference 4 with the 5-inch portable schlieren apparatus of
the Gas Turbine Laboratory altered to use an Edgerton, Germeshausen, and
Grier t~e 501 stroboscopic light source and a General Radio Corporation
35+nillimeter camera. Sections of each of these four films are shown
in figure 24.

The velocity of propagation and the number of cells in each band of
~1 were determined from these films~nd hot-wire velocity measurements
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.

made upstream of the cascade at a radius of 7.69 inches. These data
are presented in figure 25 together with values of VP/Crl predicted .—

t
for a circular cascade by the equation on page 42 of reference 4.
(Values for 132 used in this equation were determined by extrapolation
from the values measured in schlieren photo~aphs before the onset of .
stall propagation as was done in ref. 4.) -; .

Traverses of the hot-wire probe across the span of the cascade air- —

foils indicated that the flow was two-dimensional for all the bands except —

for values of P1 greater tkn 79° where the velocity fluctuations
were about twice as great near the walls as in the center of the blade

Typical hot-wire traces takenat r = -7.69 inches for the four
%& of propagation are shown in figure 26. ..Thehot-wire equipment
used was a Flow Corporation model HWB hot-wire anemometer and another
similar unit with hot wires of 0.003-millimeterdiameter and 0.04-inch
length.

~ careful examination of the negatives._?rornwhich figure 24 was
made, one can discern the wakes from the upstream guide vanes. It ~S
attempted to make one wake more visible by heating a turning vane with
soldering iron filaments brazed to each end. However, no effect could
be noticed in the pictures. In figure 24(a), during the first band of
~1 for which there_was propagation, neither_these ~kes nor the fluid

from the ad~acent separated airfoils were wa=hed over the leading edges
of the airfoils during stall propagation. In figure 24(b), a turning-
vane wake just barely flicked over the leading edge of each blade before
it stalled and not much of the separated fluid from the adjacent blade
was washed over. In figure 24(c), the same wake as in figure 24(b)
crossed back and forth over the leading edge:of each b~de and more of ._
the separated fluid was washed over. In figure 24(d), the wakes cannot
be detected. It is probable that the wakes and separated fluid injected
into the blade boundary layers had an effect on the time required for
the blades to stall. This may have caused the great increase of propa-
gation velocity from figures 24(a) to 24(b). This effect is more evident
when VplCel is calculated rather than VPICrl. For the bands in order

——

—

—

—
.

,---

—

—

of increasing values of Bl,
‘p~el

w 0.13,0.28,and 0.25, Thus,

h+h increased by a factor of 2 from the first to the secondhand
r.

and then remained virtually constant.

Because the stall cells were not all precisely the same size and
shape for a given mean flow, there is.an uncertainty in measuring ‘P
and the number of cells. It is believed that the uncertainty in deter-
mining the number of cells was less than five for the first band, three
for the second and third, and zero for the @st band at 71°. me
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uncertainty in

the first, and
%

When half
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‘P is about E percent for the last band, 8 percent for

less than this for the other two as indicated in figure 25.

the blades were removed from the cascade, this be~g the
only alteration, the following expertiental results were obtained for
configurationA, at a value of u = 1/2, Pressure coefficient ~ is

plotted against” B1 in figure 19 so that comparison can

the data for a of unity. It is observed that for u =
a mean pressure drop through the cascade for some values

wire traces showed that the first band of 131 for which

propagation was at 54° and was very
periodic but were intermittent with
turbulence. For 600< Pl< 64° a

shown in the photograph designated
there were low-amplitude unperiodic
became more distinct for PI< 79°.

that the velocity fluctuations were

narrow. The signals
occasional lapses to

be made ~ith

1/2 there was
of pl. Hot-

there was stall

were never
high-frequency

periodic signal was observed as

E in figure 26. For 64°< Bl< 790
fluctuations in the flow which
Traverses of the hot wire indicated

two-dimensional and periodic only
for 600< P1<640. In the 54° band, velocity fluctuations existed

only in the center third of the blade span and for ~1 <79° only in

outer thirds of the span near the walls.
.

Schileren pictures were taken for P = 600 and a section of the
film is shown in figure 9. From the film and hot-wire traces the num-

8
ber of cells and their velocity of propagation were determined and are
indicated in figure 25. b figure 9, the wakes from two of the guide
vanes are visible. (They have been darkened to aid in reproduction.)
llromthe motion of these wakes it is apparent that the unsteady fluctu-
ations in the flow are large. It is observed that the wakes briefly
cross over the leading edges of the cascade blades as they fluctuate.
In figures 24 and 9, the boundary layer appears to separate fYom near
the leading edges of the airfoils when they stall and to reattach when
they unstall.

When the Reynolds numiberwas lowered.
a 1/2, the velocity fluctuations became
~=litude for all the bands of B1 where

at higher Reynolds nuaibers.

In fi$!ureI-2is seen a section of an

below 50,000 for a value of
nonperiodic and of very low
stall propagation had existed

interferometer film taken for
configurat~onA with IS= 1/2 and pl = 600; Rel ~d MI are 333~oo0

and 0.47, respectivdy. The bands in figure I-2indicate lines of con-
stant mean air density, which correspond to lines of constant pressure
if isentropic flow can be assmed and lines of constant velocity magni-
tude also where the time rate of change of velocity can be neglected..

,-
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The striking feature of figure 12 is the distinct appearance of the
vortices shed from the leading and trailing edges of the airfoils.

.

.—
f

E@erimental results - configuration B.- To determine the effect
of interference between guide vanes and test cascade, the radii of the
test cascade and thk static pressure taps for measuring P1 and P2

were increased three-q-ers of an inch to configurationB. This
effectively doubled the clearance between the blade rows and shifted
their relative angular position appro~tely 3° about the axis of the
test section.

In figure 20 ~ is plotted against 131 for configurationB and

a = 1. Compuison with the corresponding ~ curve for configuration
from figure 19 indicates that the increased clearance had no pronounced
qualitative effect upon Cp, although values of ~ were generally

greater for configurationB. The bands of j31 where stall propagation
existed were shifted a few degrees, which was probably caused by the
~ shift of the blade rows from configurations to B through the
effect of the turning vane wakes on the dynamic stall characteristics
of the cascade airfoils. There were also detailed effects on the flow
caused by the increased clearance. Periodic two-dimensional stall prop-
agation existed at B1 = 57° and 63°. Low&mplitude, low-frequency, .
unperiodic fluctuations existed for 50°< pl < 53° and for 61 ~ 78°.

Flow was relatively steady between the peaks of PI in fiWe 20j as

was described for figure 19.
#

Figure 27 shows three interferograms of
the flow at incidence where the flow was comparatively steady. Inter-
ferometer pictures were tsken at ~1 = 57° and 64° and are presented in

in figure 1. The nuniberof stall cells and their velocity of propagation
as determined from these pictures are shown in figure 20.

When the cascade was assenibledwith 27 blades (u = 1/2), it was
found that stall propagation existed for” 53°< 131< 68°. However, the

perturbations were two-dhensional and periodic only for 560< PI< 660.

It was found that decreasing the Reynolds n-tier made the fluctuations
less periodic and of lower amplitude. Interferometerpictures were
tdsen for ~1 = 580,61°,and 64° and are”presented in figures 2(a) to

2(c). (The pictures for PI = 61° are used to calctite the pressure

field during one cycle of the motion described in the following section.)
The following data apply to figure 2:

.

m
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‘igure ~1, deg Nye~~of ‘p/crl Vp/cel Cp Rel Ml

2(a) 58 15 to 16 0.78 0.42 0.25 266,~o 0.30

2(b) 61 19 to 20 .87 .43 .15 235,000
●37

2(c) 64 14 to 15 1.00 .45 .13 200,000 .31

The cascade was reassefiled with 18 blades (a = 1/3) and it was
found that periodic two-dimensional stall propagation existed only for
narrow bands of ~1 about 57° and 70°. Interferometer pictures at

these two values of ~1 are shown in figure 3 and the following data

apply to them:

Figure $1) @ N::’80f Vp/Crl vpj%l Cp Rel Ml

3(a) 57 7t08 1.27 0.83 o.1~ 255,000 Q.31

3(b) 70 18 1.47 .91 .058 264,000 .32
6

When the cascade was assembled with nine blades (a = 1/6), it was
found that hot-wire traces upstream of the cascade indicated only
Varyingaplitude high-frequency velocity fluctuations as ~1 was

increased. At ~1 = 57°, however, the fluctuations appeared to be inter-

mittently periodic and interferometer pictures were taken as shown in
figure 4. The frequency with which the blade stalls in figure 4 is
approximately 790 cps, Rel = 250,000, and W1 = 292 ft/sec.

In reference 6 is described an experimental investigation of the
K&n& vortex shedding of a flat plate at high incidence i. It was
found

where

that for 200 <“i < 600

0.164<

F is the frequency at

—

‘L Swini < 0.150

which vortices were shed from one edge of

the plate. FL sin i from the preceding dataThe result of calculating --
w

for configuration B and plotting it against c is shown in figure 5.
Although there is considerable scatter in the data, it is observed that,
as was shown by a similar plot for h = 43° in reference 4, $he frequency
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.
with which a blade stalls during stall propagation in the cascade appears
to approach the tin vortex shedding”frequencyof the isolated flat “
plate as the solidity of the cascade is decreased. d

Determination of flow properties from interferograms.-From inter-
ferometer photographs of a two-dimensional flow, it is possible to deter-
mine the pressure field by conventionalprocedures. The purpose here :.

is to determine the pressure distribution around the circular-cascade
airfoils and to estimate the strength of the shed vortices during stall
propagation. Also, the pressure distributionbefore the onset of stalJ.
propagation in a circular cascade is compared with that of the stiulated
linesr cascade.

The use of interferometryto obtain quantitative information about
two-dimensional pressure fields which are unsteady in time is no more
difficult in principle than it is for stea~ flows, but practical dif-
ficulties are encountered in the photography and direct pressure measure- “=
ment required. As used herein, the properly ad~usted interferometer
produces fringes_or bands, such as those in figure 2, which indicate
lines of constant density. No indication-is given in the interferogram
of the density level but only of the absolute value of the density dif-
ferences between fringes. The sign of the density change between fringes
is determined from the schlieren pictures and from a qualitative knowl-
edge of the flow. It is necessary to determine independently the value
of density at some point in the interferogramat the instant the picture

—

is taken. This is done by the determination of two other independent
fluid properties at the point which are pre_ssure~d entropy. The

*.

entropy is assumed constant everywhere In the interferogram (except in
the cores of the vortices) and is evaluated upstream of the cascade
where the flow is relatively steady and fluid properties can be measured
conveniently. The static pressure fluctuationswith time are measured

.—

at a point in the interferogramwith a mi@ature crystal pressure pickup.

Interferometer: A portable Mach-Zehnder interferometerwith 5-inch-
diameter optical elements was used in this study. A detailed discuss-ion
of the design and operation of this instniient is given in reference 15.
Only brief mention of its use will be tie-here with special reference
to the present application. Apertures of 1./I.6-and 3/32-inch diameter
were used at the focal point of the coil.~ting lens causing the light
to emerge from the lens as a parallel beti; At the first splitting
plate the beam is divided into two halves which pass respectively through
and around the test section before being recombined at the second
splitting @ate.- The fact that one beam does not traverse the test-
section window is compensated for by including in its path two ghss
plates which are optically similar to those of the test section. The
resulting beam is focused on the film; The image-producedOrithe film
depends on a comparison between the two optical path lengths.

—

—

—
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With no flow in the test section and a smll angular displacement
between the splitting plates, a series of parallel interference fringes
results. If these bands are originally spaced infinitely far apart, by
setting the mirrors exactly parallel, any fringes which appear in the
flow picture will be lines of constant density. Some loss of accuracy
results from imperfections in the optical elements precluding infinite
band spachg. The interferometer optics, test-section windows, and
compensating plates combined gave a minimum of one fringe instead of
the zero number of fringes impliedby perfect optics and exactly par-
allel mirrors.

A concentrated light source is required to expose the film. The
source used was an experimental xenon-filled lamp, a photograph of
which is shown in figure 28. It is capable of flashing for approxi-
mately one microsecond at rates of 60 to 8,OOO per second when used
with the Edgerton, Germeshausen, amd Grier t~e 501 stroboscopic modu-
lator. Its small size, large amount of light flux, reliability, and
long life make it very satisfactory. The light was filtered to give
the monochromatic light necessary to the interferogram evaluation using
an interference filter which passed a band of wavelengths 100 angstroms
wide centered at 4,500 angstroms.

Pressure measurement: A miniature crystal pickup capable of sens~
high-amplitude, high-frequency pressure fluctuations is shown in fig-
ure 29. It is a piezoelectric, barium-titanite crystal in the shape of
a hollow cylinder 0.12 inch long by 0.09 inch outside diameter. It iS
inserted in a drilled hole in one of the optical flats at a measuring
point midway between two airfoils shown in figure 2(b). It is mounted
flush with the inner surface and senses the wall static pressure. A
drop of glue in the end of the cylinder acts as a safety valve and seals
the crystal so that, when the test-section pressure is applied to its
outside surfaces, hoop tension stresses are prcduced which cause mechan-
ical strains and the accwulation of electrical charge on its inner and
outer cylindrical surfaces; a voltage results which is sent through a
high-impedance amplifier and displayed on an oscilloscope. Since the
impedance of the circuit is not infinite, the charge produced on the
crystal faces “leaks off” which prevents its use in measuring low-
frequency pressure fluctuations.

To determine the rise time of the pickup to a step chsmge in pres-
sure, the pickup was moupted in the wall of a shock tube which is
described in reference 16. The rise the was less than 0.05 milli-
second, very adequate for the intended use. The pickup maybe cali-
brated by determining its sensitivity to temperature and observing how
quickly electrical charge leaked from the faces of the crystal; a device
described in reference 17 was used rather than the shock tube because
of its convenience and reliability. The device makes use of a rotating
valve to switch a small test chamber between two large tanks of air at

.



38 NACA TN 4154

.

different pressure levels. It was concluded @at the distortion due to
charge leabge and temperature sensitivity could be neglected.

—
.-

A convenient method of synchronizing the pressure trace on the
oscilloscope with the Interferometerphotogra@s is to project both on
the sane filmas in figure 2(b). With the oscilloscope set so as to
suppress the the (horizontal)axis and with~{he film stationary, the
pressure trace is focused on one-half the film and set above a conven-
ient reference line in the interferogram, the..wirewhich connects the.
trailing edges of the blades. With the film in motion And the time
axis thus provided, synchronization is complete. The amplitude of the
pressure fluctuation at the measuring point in an interferogram is given
by the intersection of the wire and trace. Since the crystal does not
record a steady pressure, this fluctuating component of pressure must
be added to the time mean static pressure measured with a wall static -
pressure tap directly opposite the crystal location (a l/8-inch-diameter
hole drilled in the opposite optical flat). The scale in figure 2(b)
indicates the value of the mean pressure and_the magnitude of the flue-”
tuating cgmponent at the measuring point.

For pressure variations small with respect to the mean pressure,
(in the present case O.9/18), the maximum error incurred in assuming
the press~e at the measuring point to be equal to the mean pressure
is smll (5 percent). Of course, it was nece6sary first to measure
these fluctuations to determine whether they could be ignored. Fressure
distributions other than those for figure 2(b) were calculated neglecting
the pressure fluctuations at the measuring pffint.,

—
..
—.

--
.-

-_ ~.— —

-.— ..

——

Measured pressure
in the presentation of

cades seems to be S s

distributions: The most common ordinate in use
pressure distributions from steady flows in cas-

Po - ‘local
-—

That this is also a meaningful .—
. -* —,

—
parameter for use in unsteady flows may be shown as follows:

—

—
p$

In an unsteady flow $ + p + — = Constant = (PO)~ where
2

p = Velocity potential. If one integn%tes ~th respect to time over
..-—

?ne cycle and requires that $ make no-net ~ontribution for this period
—

( ( )otherwise.the time mean value of p + ~ PV2 monotonically

)
decreases ,

1P ‘t + !J :’+dt ‘CT = ‘Po)-w’

increases or

—
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c J P. dt _
== Time mean p. = (po)-

T

Therefore, for an unsteady flow,

Although in a steady flow S must always be positive, the preceding
discussion shows that in an unsteady flow S my be negative in certain
regions and periods in which $ is a large negative quantity.

The pressure distributions corresponding to each of the ten frames
of figure 2(b) for one period T of the motion are shown in figure 30.
Generally, they bear little relation in form to the conventional graphs
of pressure distribution. This is to be expected, however, for not only
is the flow unsteady, but the effect of vortices in the field represents
a major departure from conventional flow. Figures 30(c), 30(h), and
30(i) show negative values of S. The circled data points in figure 30
are obtained from the interferogram fringes of figure 2(b) and by inter-
polating half fringes.

At the beginning of the cycle (frame 1 of fig. 2(b)), the blade has
shed a counterclockwise vortex from its trailing edge, and the vortex
shed from the leading edge of the preceding blade is coming into view.
The latter vortex should have a strong effect upon the blade circulation
according to the analysis presented previously. One would expect from
this analysis that, in order for the Kutta condition to be maintained,
the circulation around the blade in frame 3, figure 2(b), wouldbe large.
This is,verified qwlitatively from the pressure distribution of fig-
ure 30(c) and from figure 31, a graph of Cn against t/r as deter-
mined from the pressure distributions of figure 30. On the other hand,
the blade circulation decreases as a shed vortex leaves its leading edge
and the effect on the blade pressure distribution is clearly indicated
in figure 30.

Local incidence angles at the blade were estimated from the schlie.
ren pictures of figure 9, which show the wakes of the upstream nozzles
darkened somewhat for reproduction purposes. These estimated values
of i are plotted in figure 32 against t/-r. The error causedby the
motion of the wakes and the difference in clearance between blade rows
in figures 2 and 9 is neglected. Using a common time aXiS t/-r,one may
plot CL, as calculated from figure 31, against i from figure 32 to

obtain information about time lags between local incidence and ~. Such a

—.
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plot is shown in figure 33 which indicates that
between

seems to
trailing
with its
true for

The

i and CL. This is the usual result,

NACA TN 4134. ,

.0
a phase lag does exist
and the explanation

.-

–d—
be that the presence of a counterclockwisevortex near the

.

edge has a negative effect on the blade circulation compared
effect after having been washed dowii%tream;the reverse is

.- ..—
the leading-edge vortex as shown previously.

pressure trace in figure 2(b) clearly shows the presence of the —
shed vortex. At the beginning of the cycle,_when vortices are oriented” “
so as to cause low velocity at the measuring point, the trace indicates

—

high static pressure. At about the fifth frame, when a vortex is quite
—

close to the pressure pickup and oriented so-that the velocity is high
there, the trace indicates low static pressure.

,_..—.=--

The magnitude .ofthe blade force calculated from the sequence of
figure 30 varied from 3 to 7.5 pounds. Although the blade force in the ,.

chord direction was calculated, these forces were small enough to be ‘“
neglected. Hence the normal force is approximate.lyequal to the blade
vector force.

——
.–*

With the above experimental information, one can also show the
“B5en effect,” which is that in the unsteady growth of lift on a wing .-
accompanying a sudden increase in the angle of attack an increase in

—
--

the value of maxtium lift occurs. In reference 13 a graph of lift
.

coefficient against incidence is given and the results may be compared
with those of figure 33. At an incidence angle of 20° (for which the &_

steady state CL is a maXhLmI of 0.68 from ref. 13)} fi~e 33 gives

values of 0.71 and-1.45 for CL during the unsteady flow. The maximum

value of CL from figure 33 is 2.1. There is some error involved in
—
_:

this comparison since both CL and CN are based on the average

upstream dynamic head rather than on the instantaneous local value;
however, the above calculations appear to demonstrate that there is

.—

considerable departure from their quasi-stea~ stall characteristicsby
the airfoils in question during stall pmpaga~ionas speculated previously -, ~ .:

In order to verify the design technique used to simulate a linear
cascade with the circular cascade, the airfoil pressure distribution was
calculated for B = 46.4° from fi

~~2~~(8~~~~s~~~1~~iZ~Zn

.

for the equivalent linear cascade
combinations of solidity, incidence, and other factors in reference 13.
To compare the two distributions it is only necessary to reduce the
circular cascade distribution to that of a linear cascade, using the
transformation given in reference 12. Of course, the comparison must
be made for equal values of a, A, i, and so forth. Thus, in fig-
ure 34, the transformed pressure distribution correspondingto PI . 46.40

.—

.-

.- —

.

has been compared with the appropriate distr~bution of reference 13.
.

—

.
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This cowison indicates some success in the attempt in designing the
circular cascade to duplicate the pressure gradients on the suction

% side of the blades. The apparent difference in blade loading is to be
expected from the circular transformation.

Estimation of strength of shed vortices: It is possible to esti-
mate the strength of a vortex mcn%ng past a point where the pressure is
measured as in figure 2(b). Advantages of this method are that no
measurement is required near the core of the
high and that the strength of an “equivalent
estimated.

The variation of p, static pressure at
vortex r moves along a line (y = Constant)

vortex where losses are
potential vortex” canbe

the origin, when an isolated
with the free-stream veloc-

ity C in an infinite field, can be determined in a coordinate system
fixed to the vortex and is given by

()

r2

P.-P==
1C2 X2+l

. 5P
p

.
where the coordinates of the vortex ue (X, Y = b).

An estimmte of the circulation about an airfoil can be made by.
using the Kutta relationship L = PWI’O and mibstituting approximate

measured values of L, p, and W. Applying these two relationships to
the ninth frame of figure 2(b), in which the blade circulation is nearly
minimum (and neglecting the effect of adjacent bhdes), gives an esti-
mated ratio of blade circulation r. to shed vortex stre@h r of

0.19. However, because of the i~ccuracies involved in t~s ~lc~tion~
a direct examination of the interferometer pictures probably yields as
good an answer. In figures 1 and 2, it is observed tmt after the a~-
foils stalled there was virtually no difference in fluid density at
points which are at the same chordwise position on the airfoil but on
opposite sides. Neglecting the local time rate of change of velocity
and losses, this indicates that the pressure and velocitY were a~ost
equal at these points and that the cticulation about the airfoil must
have been small. l’!herefore,it appears that the circ@ ~s~de a~-
foils shed nearly au of their bound vorticity when they stalled as
assumed in the analysis.

Discussion of results.- The experimental results from the circ~
cascade indicate that stall propagation occurred for narrow bands of
mean incidence during which the blades periodically shed nearly all
their bound vorticity in the form of discrete vortices. It appears

a that the airfoils consistently stalled from their leading edges during

.



42 NACATN 4134

stall propagation and that between stall cells the flow reattached to
the suction side of the airfoils.

Although the washing of the guide-vane wakes over the cascade air-
foils had an influence on the flow as discussed previously, this does
not appear to be the reason for the distinct bands of ~1 at which

propagation occurred. The effect of Reynolds nuniberon stall propaga-
tion was pronounced at some mean incidence but not at others. There
was no pronounced effect on Cp caused by the increase of clearance

between blade rows for u of unity but Vp increased and the nuniber

of cells decreased.

The analysis of reference 4 predicts that the effect of increased
clearance is to decrease Vp but that Vp should increase for fewer
cells. The present analysis indicates that the effect of decreasing
the extension of the flow field downstream of the circular cascade,
which was associated with the increase of clearance, should have caused
a tendency for the number of cells to increase. The fact t=t the num-
ber actually decreased indicates that the effect of increased clearance
was more important than the effect of decreased downstream field in
determining the number of cells in this case.

It is noted that for configurationB, Vp/Cel was essentially con-

stant for each value of u but increased as u decreased. It is prob-
able that this increase was caused in part by the effect of a decreased
number of boundary-layer time delays (associatedwith blade stalling).
Furthermore, &rom figure 8 it can be seen t-t the induced effect of
the circulation about airfoil (a) upon the shed vortex I’ tends to
decrease its transport velocity. This effect tends to increase Vp as

u decreases independently of the effect of boundary-layer time delay.
The frequency of stall propagation appeam..h hve_a~prwc_hed.tJe..e
vortex frequency for an isolated plate as u decreased.

It was observed during the e~erimental work with the circular cas-
cade that some of the stall-cell patterns were sensitive to srall dis-
turbances in the flow. For instance, in one case (for a = 1), stall
propagation could be prevented by the insertion of a l/8-inch-diameter
hot-wire probe upstresm of the cascade. On the other hand, at one time
during the testing, 8 of the 54 cascade blades failed and were washed
downstream and no pronounced effect was observed on stall propagation
except that the flow was slightly less periodic than it was with unifo~
blade spacing. Therefore, the stability of the stall-cell patterns and
the effect on stall propagation of destroying the axial symmetry of the
flow appears to vary a great deal with mean flow condition in the cir-
cular cascade. N= hysteresis or time-delay effect could be discerned
between the stall-cell patterns in the circular cascade and the guide-
vane setting (incidence).

.
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Investigation in an Isolated Rotor

k Description of appsxatus and procedure.- This investigation was
undertaken to extend the available experimental information about the
detailed nature of flow through an isolated rotor during stall propaga-
tion. The equipment used was virtually the same as that described in
reference 14, where a similar investigation was made for a guide-vane
rotor and a guide-vane rotor-stator coxibination. Figure 35 is a sche-
matic diagram of the research compressor showirigthe measuring stations.

The essential dimensions of the single-stage sxial compressor used
in this investigation are:

Huh-tipratio. . . . . . . . . . . . . . . . . . . . . . . . . 0.75
Tipradius, in. . . . . . . . . . . . . . . . . . . . . . . . . u.63
Meanradius, in. . . . . . . . . . . . . . . . . . . . . . . . 10.27
Blade chord(notaper), in. . . . . . . . . . . . . . . . . . , 1.51
CanberangleO, deg. . . . . . . . . . . . . . . . . . . . . . 30.3
Linear twist, roottotip, deg . . . . . . . . . . . . . . . . 9.7

The blades were a circular-arc camber line, with an NACA 0010 thickness
distribution (10 percent maxinuunthickness at 30 percent chord).

The rotor blades were unshrouded, and their bolt type of fastening
allowed the stagger angle to be easily changed. The constant area
annulus etiended 29.8 inches upstream and 36.5 inches downstream of the
rotor. Radial air-flow entrance was through screens. The outflow
annulus was a diverging cone. The inner wall cone could be traversed,
thereby varying the exit annulus area and throttling the flow.

The following three rotor configurations A, B, and C were tested:

Mean-radius stagger,
Configuration

Mean-radius solidity,
A, deg (J

A 30.2 1.02

B 30.2 .71

c 52.7 1.02

Except where indicated, the rotor was operated at 1,500 rpm
(U = 134 ft/sec at mean radius) for all configurations.

.

.
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The rektive inlet velocity during stall propagation was 140 to .

16o ft/see, which resulted in a Reynolds ntiier based on the blade cho-rd
.

of 11o,ooo to l~o,ooo. *

The conventional instrumentation consisted of inner- and outer-wall
static pressure taps at five axial positions (C, E, F, FG, and G in
fig. 35), kiel probes, a five-hole probe wh~ch wasused for yaw meastie-
ments, and sphere-static probes. The pressure measurements were read
on an inclined water rmmmeter. The five-htileprobe was nulled with “--
the use of a Statham gage. >.

The probes used for measuring unsteady velocities were tungsten __
hot wires 0.00015.inch in diameter and 0.044 inch long. The direct-
current circuits of two constant-currenthot-wire anemometers were used. ‘“-
The voltage signals from the hot wires were-applied directly to a Dumont
304 dual-beam oscilloscope. The amplifier.~nd standardcalibration pro- ‘“-
cedure of the anemometer (model HWB, manufactured by Flow Corporation)
for high-frequency fluctuations was not usable, since large low-frequency
fluctuations were being investigated. Drift in the direct-current cir-,--—
cuitry caused differences in the hot-wire calibrations immediately before
and after a run of 1/2 hour length as great;as 25 percent. The calibra-
tion which came closest to being consistent with the steady-state
readings before stall propagation started %s used. It is felt that
the accuracy obtained is sufficient to indicate certain trends in the
data which will be discussed.

Since the hot-wire signal indicates only the component of velocity
norml to it (over a wide range of angles within a small percentage
correction), total velocity, axial component, or tangential component-
was measured by orienting the wire along radial, tangential, or axial
direction, respectively (assuming that the radial velocity component
can be neglected).

An unsteady angle-measuring probe was developed during this inves-
tigation. As shown in figure 36, it consists of a tube which slips
over a standard hot-wire probe. The tube-is sealed at the end and ~’s
two small holes drilled 120° apart at its midsection similar to a stand-
ard cylindrical yaw probe. A thin wall is soldered inside the tube _
near the hot wire to reduce turbulence.

If the probe is not nulled in a streaming flow, there is flow
through the probe which the hot wire senses. This probe is sensitive
to low velocities and it canbe milled within +Qo. Its response is
fast enough to $gdicate stall cells passing by it. Since the downstreti
velocity profiles during stall propagation=were approximately square
wave shapes, one could null the probe by observing the scope trace and
thereby measure the angle of flow, either inside or outside the stall
cells.
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To obtain permanent
Corporation camera and a
camera without a shutter
number of stall cells or

records of
strip-film
but with a

45

the oscilloscope traces, a Polaroid
camera were used. The latter is a
constant-sDeed film drive. The

d, the angle at whic~ the cells extended down-
stream, was determined by the relative displacement of two traces,
recorded on strip film, of hot-wire probes located at different axial
stations.

The stall-cell frequency was determined by synchronizing a sine-
wave voltage fran a frequency generator on the x-sxis input with the
hot-wire velocity signal on the y-axis input of the oscilloscope.

All probe readings except wall static pressures are values at the
mean radius unless a radial traverse is indicated. Unsteady static
pressure readings are at the outer wall and were measured with two
inductance-type electrical pressure gages described in reference 18.

Experimental results - configurationA.- The the average pressure
coefficient Cp as determined by the average of the inner- and outer-

wall.static pressures and the upstream relative head is plotted in
figure 21 against pc, where

%CG = ‘G- ‘c; PWC2

Pressures were measured at the stations indicated. The factors Wc and
Pc were determined by measuring Cc with a sphere static probe.

The number of stall cells and their velocity of propagation are
given in figure 37, together with values of Vp predicted in reference 4,

for no downstream pressure fluctuations by

—.

$2= 21 - %c~)

x

( )

LBYC +1
sin 2~c —

Z ~s PG
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where B
the same

= Nuniberof cells.
as in the “channel

In figure 38 are shown

NACATN 4134

.
The values predicted in reference 2 are
theory” of reference 3 for no phase lag,

u

‘P 1
~=—

—
sin 29C

unsteady wall static gage pressures measured
at stations E and FG. It is observed that the upstr~ fluctuations are
consistently several times as large as those downstream.

A series of hot-wire traces correspondingto measurement of ceG

and C~ is shown in figure 39. Traces for ~ and C
%

are shown

in figure 40. The apparent difference in the average values of C%

~ in figure 40 is probably due to error in calibration of theand Cx —

hot wires caused by “direct-currentdrift” in the hot-wire circuitry as-
discussed preciously, since these values must be constant because of
continuity.

In figure 41 are given the results of calculating We
() GO

and
.

()WeG ~ from the hot-wtie traces of figure 39. In figure 42”are CXG o
()

(%)and C as calculated from figure 40 and CW from sphere static
i

.—

probe readings.

The measured values of C
(~)

are less than those of C
xc

for
o

PC< ‘j8° in figure 42. This does not appear to be physically possible

because of the blockage effect of the cells. It is felt that again this
is a calibration discrepancy since

c%
must be the average value of

c%because of continuity. Using this fact, the value of
(%)

esti-
0

mated for the hot-wire trace at Pc = 56.70 is 95 ft/sec. Since-all

the data indicatettit
()c% Q

is essentially constant with throttling

except for extremely high values.of 13c,it is probably a good approxi-

mation to teke
()c% o

as constant and equal to 95 ft/sec as indicated

in figure 42. .— ,“

The flow single
()‘G o as measured by the hot-wire angle probe,

—

-.

~G as determinedly a standard five-hole yaw probe, and (~G)o ‘e
.

.
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plotted against PC

system fixed to the

in figure 43. The flow angle in the coordinate

rotor (PG)O was calculated from an average value of

(~)o, 40°, and C% taken as95ft/sec.
() o

From figure

18 percent than

41 it is determined that
()
‘8G i was greater by 4 to

@G)o (as P, ~creases). T~sres~tcorre~tes

with the experimental’observation that the stall-cell angle @ was
negative and smaller than -15° for all the stall-cell patterns of
configuration A.

Experimental results - configuration B.- To determine the effect of
blade spacing, half the blades of configuration were removed resulting
in configuration B. The number of cells and their propagation velocity
are shown in figures 44 and 45 which indicate that periodic one- and two-
cell patterns existed for only a narrow range of high incidence for
configuration B.

Expertiental results - configuration C.- To ascertain the effect of
blade stagger angle, the stagger was increased 22~ &om configuration

to configuration C and comparative data were taken. The measured results
are indicated in the folkwing figures:

Corresponding
?igure Results plotted against PC figure for

configuration A

22 cpCG and C
m

21

46 Number of cells, VP) and predicted Vp 37
47 Hot-wire traces of cxE and C

%2
40

48 (1) c+ measured by sphere static probe 42, 43

‘2) (~). ad (c~)i as Calcutedfrom

figure 47

(3) (C%)o = 76 ft/sec as calculated from

figure 49
(4) ~G as determined with standard five-hole

yaw probe
(5) (~). as meas~ed with hot-w~e angle

probe

(6) (~G)o = 45.30 calculated taking average

(%)0 = 37.5° and average

(CXG)O = 76 ft/sec
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.

Figure 49 shows a strip-filmrecord of a hot-wire trace of sxial
velocity measured at station G while the throttle was continuously
opened so that ,thecompressor oper@ing condition changed from two, to
one, to zero cells.

(%)
For C the trace is at the top edge of the

0’
film for the entire strip. During this strip film, which took about
5 seconds, direct-currentamplifier drift was negligible. (The calihra-
tionwas checked immediatelyafter the run, and it had not changed during
the run.) The value of

(%)
o is observed to be almost constant and

is calculated to be 76 ft/see, which compares well with the average of
the values from the hot-wire traces of figure 47.

For configurationC, the angle @ between the stall cells and
rotor axis was determined from the measurement of phase kg between two
traces of hot wires inserted at stations G and K. Tt was determined
that for the one-cell pattern # = 19° and for the two-cell pattern
@ = 16°. ‘Theerror of measurement probably was less than 10 percent.

Comments on compressor operationo- Just before rotating stall
stsrted, as the throttle was closed, a “mushy” flow, as it has been
called, was observed nesr the hub and tip as indicated by a “hashy” hot-
wire trace. A very weak rotating stall might &ve been present at the
hub for configurationC. The relative magnitudes of the mush at
1/4 inch from the hub and rotating stall of one cell can be seen fqom
hot-wire traces of figure 50 for configurationC. The mush was le,ss
than one-fifih the amplitude of rotating stall and was not investigated
‘further. Rotating stall measurements were tsken through the o~rating
range until surge st~ted. Although unperiodic propagation could still
be observed along with the surge (since the surge was of much lower fre-
quency), no attempt was made to take data m-d separate the two effects.
The variation of velocity fluctuationwith axial distance from the rotor
was measured at one operating condition for configuz%tionA as is shown
in figure 51. It is noted that the amplitude of the velocity fluctua-
tions decreases rapidly with distance upstre.gmbut that the fluctuations
persist much farther downstream. At station K, 26 inches downstream,
the smplitude of the fluctuations is about one-half that at station G.

Upon throttling the flow, rotating stall always started as two
cells then, as the flow was increased, the two cells changed to one.
However, if the axial symetry of the flow was destroyed by placing an
obstacle (such as the observer’s hand) in the inlet or outlet of the
compressor, the one-cell pattern could be forced to appear before the .—.-
two-cell.pattern as the flow was throttled.

If the compressorwere operated at a value of

of stall cells changed, the cell pattern sometimes
forth between the two numbers of cells.

c
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Radial traverses of the hot-wire probe during stall propagation
indicated that the flow was fairly two-dimensional for all the observed
stall-cell patterns, although in some cases an estimated 25 percent
smaller fluctuation in velocity was observed at the hub.

To determine the effect of Reynolds number on rotating stall char-
acteristics, the rotor speed was held at 500, 750, 1,000, 2,000, and
2,500 rpm and the flow was throttled. A comparison of the number of
cells and propagation velocity at three speeds is shown,in figures 52
and 53 as functions of 13c. “Constant geometry” runs were made for two

constant throttle and rotor settings. The results of these runs and the
previous one are shown in figure 54, which is a plot of the number of
cells and PC as a function of ReC. As indicated in these figures,

there is a hysteresis effect between the number of cells for some values
of Rec and PC. me data points at minimum values of 13c indicate

the onset of stall propa~ation and the points at maximum values of pc

indicate the end of periodic stall propagation. (For higher values of
13c high-frequency velocity disturbances and surge existed.) The data

plotted in figures 52, 53, and 54 indicate that there was not much
effect of Reynolds number above 100,000 or 1,500 rpm but that for lower
values the range of PC for which periodic propagation existed is

shifted up. As Reynolds number was lowered, the one-cell.and then the
two-cell patterns disappeared, but there was not much effect upon prop-
agation velocity. It was found that there was virtually no difference

‘n %CG at corresponding values of f3c for 500 and 1,500 rpm.

Axial velocity profiles as determined from measurements made with
a standard five-hole yaw probe for configuration C are shown in fig-
ure 55. They indicate that there is some error involved in assuming
nean radius measurements to be representative but that this error is
less during than before the onset of stall propagation. The difference
in area under the profiles measured during stall propagation indicates
the error inherent in using a standard five-hole probe in an unsteady
flow.

Discussion of expertientil results.- The hot-wire measurements of
figures 40 and 47 indicate that the downstream axial velocity profile
can be approximated with a square wave which changes with throttling
only along the abscissa.

(%)
That is, C

(%)
and C in figures 42

0 i
and 48 remain essentially constant with BC and maintain approximately

a 4:1 ratio, but the nuniberof cells and the width of the cells change
so that their bloc’kageeffect increases continuously with throttling.
The data appear to correlate with those from reference 19 in indicating
that during stall propagation the velocity triangles outside the stall ..-—
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cells were nearly the same as those for ~u (before the onset of

stall propagation).

The unsteady pressure measurements of figure 38 indicate that the
fluctuations were several times greater 1 inch upstream of the rotor than
they were 5.6 inches downstream. (When a pressure gage *S inserted
7 inches downstream at station G, virtually-no fluctuations couldbe
observed in the trace.) As a stall cell approached the upstream gage,
the static pressure at this point rose to ar~lue geater than the
absolute total head far upstrem. but less than the total head relative
to a coordinate system fixed to the stall-cell pattern. The static
pressure then dropped as the stall cell passedby the gage. There was
a pressure drop through the rotor in the stall cells. This qualitative
description of the pressure field is predictable from the flow model
used in the analysis from a consideration o“~the velocities induced by
the stall cell in a coordinate system fixed to the stall-cell pattern.

The hot-wire””tracesfor CXE in figures 40 and 47 indicate that,

as PC increased, the cells grew wider ant-that the axial velocity pro-

file Just upstream of the rotor changed shape as they grew wider. The
“sag” in the profile caused by the blockage ‘ofthe stall cell changed
from a spike form for a thin cell to a double spike indicating that
there was more flow through the center of the wide cell than near its
edges. Since the trace did not ever go to zero (the minimum value being
25 ft/see), in no case was there flow reversi%lat station E during stall
propagation. This fact was verified independently of the calibration of
figures 40 and 47 by quickly pulling the hot-wire probe at station E out
of the compressor and observing that for zero air velocity the trace went
considerably lower than the minimum displacement for the double-spike
wave form during stall propagation. A check-was also made by quickly
turning the wire 90° from a tangential to axial direction and observi~
the sane result as above for zero velocity norml to the wire. The
number of cel& is observed to increase after the double-spike form
appeared, which suggests that the double-spike form split into two cells,
a tendency predicted by the preceding analysis. From the strip-film
trace of figure 49, it is observed that the opposite sequence occurred
when the flow was increased through the rotor running at constant revolu-
tions per minute. At first there were two stall cells 180° apart, then
the cells gradually moved together forming a double-spike pattern and
then a single-spike pattern.

The hot-wire traces of figures 4Q, 47~”and 49 show that the shape
of the stall-cell pattern is not perfectly constant in time or axisym-
metric (as assumed in the analysis for a given mean flow and even number
of cells), This fact appears to explain why one cell of a two-cell pat-
tern might split and thus form a three-cell pattern as the flow is

.
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.

throttled instead of both cells splitting simultaneously. However, the
trend for the observed shapes of the stall-cell pattern with throttling

x
appears to correspond qualitatively with the trend predicted by the
analysis.

In figures 44 and 45 & and ~ as functions of PC axe com-
%

pared for configurationsA, B, and C and for data from reference 19. It
is noted that all stall-celJ patterns observed herein re’volvedat
0.48u< Vp < 0.59u, or approximately half wheel speed. In fi~e 44)

Vp increased slightly when the solidity of the cascade was reduced in
a~eement with the trend observed in the circular cascade.

Not much effect on propagation velocity occurred with the change of
stagger angle or with Reynolds nuniberchange above 100,000. However,
the number of cells was greatly affected by the chmge of solidity, of
stagger, and of Reynolds number below 100,CX2O. *.

The propagation velocities predicted by the small perturbation
theories of references 2, 3 (no phase lag), and 4 as shown in figures 37
and 46 appear to overestimate the experimental values layas much as

. 50 percent. The correlation of the data with the theory of reference 4
appears to be well described by the correlation given on page 24 of that
reference “the values of propagation velocity predicted when the boundary-

. layer delay is neglected should be larger than those obtained experimen-
tally, with the difference most pronounced for the case of disturbances
covering only a few airfoils when the boundary-layer delay will have an
important effect. An increase in the wave length of the stall cells
should be accompanied by an increase in propa~tion velocity, if other
variables are unchanged.”

The effect of number of cells on propagation velocity as predicted
above appears to be borne out quite conclusively by the data plotted in
figures 37and 46.

In figure 56 the function

A = Discharge coefficient -

is plotted against Pc. The values of

Cos pc

Cos%(L- %cG)’/2
f3G were those determined with

the standard yaw probe. In references 5 and 4 it was predicted that
small perturbation stall cells may form when the slope of this curve
passes through the origin. There seems to be fair agreement from fig-’
ure 56 with this prediction.

\
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It is observed in figures 21 and 22 that the slopes of the curves
of Cp against PC for configuratiomA an_dC both approached zero
when stall propagation occurred. .—

In reference 19 tests were made witha rotor of solidity = 1,
28.5° stagger, NACA 65(u)1o airfoils, and hub-tip ratio of 0.9, As
shown in figure 45, there is overall qualitative agreement between the
data for configura~ionAand those in reference 19. Stall propagation
started at nearly the same incidence and VQ/U was nearly the same,

but there were differences in the number of cells and the measured pres-
sure fluctuations. In reference 19 it is re~orted that the pressure
fluctuations downstream were about 60 perceiitof those upstream. In
the present investigation, they are found to be three to five times as
great upstream as they are downstream; however, the gages are closer
together Man they are in reference 19, and the cells extend more unl- — —

.

,
.X —

—

fo%.y from root ~o tip than the two- and three-cell
reference 19.

Correlation of Analytical and Experimental

patterns of .

Results —

Verificationof the assumptions ude in the analysis appears from
the following experimental results: .-

(1) From figures 1, 2, 3, 12, and 23, it is observed that during
stall pr,~agation the blades in the circulti cascade shed vortices upon
entering cm leaving stall cells and lose nearly all their bound vorticity
when they enter the cells.

(2) Fr~ the approxtite sqwe wave shape of the velocity profiles
downstream of the rotor during stall propagation, as indicated by the-
hot-wire traces of figures 40 and 47, it afiears that the vortex flow
model may be used to represent the actual flow through the rotor. Fur-
thermore, the square wave shape of the downstream velocity profiles tends
to support the idea that the rotor blades stalled from theti leading
edges as the blades in the circular cascade are observed to have done.
In reference 11, page 66, it is shown that the rate at which vorticity
is shed from an airfoil is W2/2 where W is the free-stream velocity
at the separation point of the boundary layer. Since immediately down-
stream of the rotor blades the vorticity is obserVed to have been con-- ““
centrated along the stall-cell boundaries,~it might be argued that, in
order for the blades to have shed vorticity quickly enough to have
established this pattern, the point at which the boundary layer sepaz%ted
must have been located where W was Iarge’,:nearthe leading edge. The
validity of
analysis is

- .,-
*

. .-

—
7
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—
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—.
this speculation is not essential, however, since the pre”sent
independent of the location of separation. —
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(3) ‘me observation from the section “Investigation in an Isolated
Rotor” that the ratio of downstream axial velocity outside the cell is
about four times as great as that inside indicates that the approxima.
tion of N = P = 1 in the analysis may be a reasonable one in view
of the discussion in the section “Derivation of Expressions for
Propagation Velocity” which indicates that this approximation is not
critical to the resulting prediction for ‘P ●

In the present analysis, an approxtition is made for the flow far
downstream of a continuous blade row during stall propagation. The
results of the analysis indicate why some observers have found incongru-
ous experimental results from linear cascades of finite length. It
appears that, as was first described in reference 3, the blade stall-
unstall characteristics depend strongly on the nature of the unsteady
flow induced upon them by the downstream flow pattern. In a linear
cascade of finite length, the downstream flow pattern is quite different
from that for a continuous circular cascade or a rotor. Even though
there may be many blades in the linear cascade, a fully developed, trans-
lating, downstream flow pattern as described in the analysis is precluded
by the end wall effects. Therefore, the present analysis is valid only
for an infinitely long linear cascade, or an isolated rotor, where the
downstream flow field etiends far from the cascade.

The tendency for the stall cell to split into two as its width
increases, as predicted by the analytical flow model, appesrs to be
supported by the measured axial velocity profiles just upstream of the
rotor given in figures 40, 47, and 49. Furthermore, t~s tendency might
explain why smaller stall cells (greater numbers of cells) existed in
the circular cascade than in the rotor. Since the two-dimensional.flow
field of the circular cascade extended only a few blade chords downstream
of the cascade, the discussion in the section %ediction of a Trend for
the Number of Cells” indicates that the cells should be thinner (smaller
n values in fig. 10) than they are for the rotor. This fact, together
with the assun@ion that there must be enough total blockage from the
cells to cause (W2)0 tobe nearly the sameas it is for CPH (as

observed for the rotor), implies that there should be a greater number
of cells in the circular cascade than in the rotor.

Equation (12) shows that, for the vortex flow model assumed in the
analysis, stall cells can exist only for ~ > cos2~1. In figure 57
this minimum value of ~ is plotted against @l. Meas~ed values of

Cp are plotted for increasing values of ~1 until the onset of stall
propagation. Propagation started after Cp > Cosapl in the three

rotors tested. (This was not always true for the circular cascade.)

.

—
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Equation (n) shows that for the assumed type of propagation to
exist Wel> W2. If it is assumed that Cxl = C% and ~2 = A, this

condition becomes cot ~1 C cos A, giving a minimum value of ~1 for -

which stall propagation can exist in a cascade of stagger 1. This
minimum value of ~1 and the correspondingmeasured values of ~1

where stall propagation started in the test rigs are plotted in fig-

(

we~
ure 58. Also plotted is cot pl = 0.866 COS ~ which gives

\ vP=~

from eq. (11) if Cxl = C% and

curve correlates rather well with

gation actually began in the test

.

.

—
.

...__

132 )=1. It appears that this latter —

the values of ~1 where stall propa-
..

rigs. —.-

Predicted values of propagation velocity for the vortex flow model
are given by eqy.ations(11) and (12). Correlation of the rotor data
with equation (12) is shown in figures 37 and 46 where cpCG from.—
figures 21 and 22 was used. Correlation of the data from reference 19
with equation (12) is shown in table I where ~ from that reference

3-7
was used. It appears that the predicted va~ues ;f” Vp from equation (12)
are considerably greater than the measured values. It is felt that the
reason for this trend lies in the fact that p2 - pl was assumed to be

givenby isentropic flow outside stall cells in developing equation (E?).
The presence of blade wakes in the actual flow outside the stall cells
causes (p2)o to be less for a given meas~ed value of 4 t~n 1* iS

in the assumed ideal flow. Therefore, for a measured value of Ap, the
value of Vp should be less than that predicted by equation (12).

Using the average measured values for (~G)o and C
(%)

indicated
o

in figures 42, 43, and 48, V@J calculated from equation (11) is 0.-57

for configuration and 0.60 for configurationB. The correlationwith
the measured values of V~U as shown in figure 45 appears to be good

considering the accuracy of measurement, the departure of the flow from
two-dimensionality,and the simplifying assumptions in the analysis.
Equation (11) appears to predict propagation velocities more closely
than equation (12), probably because it is less sensitive to the effect
of blade wakes outside stall cells.

In table I is shown the correlation of data from reference 19 with
equation (11) using CP3.7 from reference 19 and assuming that

4

.
.-

—

—

(P)Go = Constant = 28.5° = A
*
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( X2)Cxl= c! ~

for the two- and three-cell

one-cell pattern, which are

patterns and that Cxl
(+)

= 0.8 C for the
o

estimtes based upon the data presented in
reference 19. Ih table II is shown the correlation of data from the cir-

It is observed that equation (12) over-cular cascade with equation (12). __

estinmtes the measured values of ‘~ considerably for the circular cas-
Cxl

cade. However, good correlation cannot be expected since the assun@ion
in the analysis that the flow field extends infinitely far downstream of
the cascade is not a valid approximation for the circular cascade. lWr-
thermore, the analysis is not valid for a radial flow field.

In table III is shown the correlation with equation (12) of data
from reference 14 for a guide-vane rotor stage relative to the rotor.

CONCLUDING REMRKS

Using approximations suggestedby visual observation of the flow
through a circular cascade, a vortex flow model of stall propagation in
an isolated blade row has been developed. The equation derived from
analysis of the vortex flow model (eq. (11)) appears to predict the prop-
agation velocities measured in an isolated rotor within 17 percent. Stall-
cell configurations observed in sn isolated rotor were found to be nearly
two-dimensional and to propagate at approximately half wheel speed.
The stall cells consisted of regions where the axial velocity was small
and extended downstream from the rotor in a direction parallel to the
rotor axis wlthtn k20°.

The number of cells increased as the flow through the rotor was
throttled. A qualitative prediction of the analysis is that a stall
cell of the type assumed should have a tendency to split into two cells
as it grows in peripheral extent. This tendency may be the reason for
the observed trend in the nuniberof cells.

lhssachusetts Institute of Technology,
Cambridge, l!ass.,August 13, 1956.
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TNIILEI

CORRELATION OF DATA FROM REFERENCE 19

WITHEQUATIONS (I-1)and (1.2)

Pl) Cp Number of

deg 3-7 cells k)meas~ed R)’e.. (~) k)e.g (l,)

55 0.46 2 0.53 0.80 0.38

56 .43 3 .48 .87 .54

58 ■33 1 ●89 1.19 .87

●

✎
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W II

CORRELATION OF 12ATAFROM

WITH EQUATION

59

CIRCULAR CASCADE

(I-2)

(a) Data from reference 4; u = 1

B~) ()Vp
Number of

(-)

Vp

deg
CP cells

T
‘1 measured Cxl eq. (~)

63 0.48 9 0.60 0.80
64 9 .64 ●86

a:~ 10 to 12 .70 1.03
:; a.36 1.2 .70 1.22

aExtrapolated from data.

(b) Configuration A; u = 1

Pl) (1)Vp ‘
Number of

()

L
CP cells ~

deg measured c~ eq. (12)

55 0.33 15 to 20 0.24
60

1.4
.29 13 to 14 .54 1.3

68 .25 16 .75
81 .12 5 I 1.6 i::

(c) Configuration B; a = 1

()
Vp

Pl~ Nuniberof

()

‘P

CP ~ ~
deg cells 1 measured 1 eq. (12)

58 0.45 9 to 10 0.55 0.82
64 .36 11 .83 1.6
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TABLE III

.

.

—

CORMMTIO~ OF DATA FROM REFERENCE 14

WITH EQUITION (12)

131, Nuniberof

()

~

()

~

deg CP ce11s c
‘1 measured Cxl eq. (32)

67.5 0.30 8 0.9 1.4
72.5 .25 9 1.1

a.23
1.8

75.0 1 2.3 2.2
77.5 a.20
80.0 a.16 ; ;:: ;:: ‘

.

.

al?xtrapolatedfrom data.

.
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(a) t31=570.

Figure l.- Interferameterfilms. ConfigurationBj a = 1; time iiifrom right to left. m
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(a) B1 = 58°. ,+

l?igure2.- Interferometerfilms. ConfigoralxlonB; u = 1/2.



—17.

UEAN PRESSURE, PSIA —IS.

—19 .

(b) Pl = 61°.

Fl~e 2.- Continued.
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(C) PI = 64°.

Figure 2.- Concluded.
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(a) Pl = 57.

(b) i31 = 70°.

Figure 3.- Interferometerfilms. Confi&atlon B; u = 1/3.
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Figure 4.- Interferometerfilms.
G

Confi@ratjionB; IS= 116; pl = ?70. =
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Figure 5.- Vortex shedding frequency against solidity.
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Figure 6.- Loci of vortex I’ for constant plate circulation.
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Figure 7.- Joukowski transformation of circular arc.



70 hcf4TN 4134

/
I*

Y

(d

/’
Figure 8.- Vortex representation of

x
.

cascade.

.

.



, , ,

I

,

Figure 9.- Schlieren film. ConfigurationA; u = 1/2; 131. 60°.
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Figure 10.- Pattern of vortices in stall cell.
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Figure 11.- Velocity triangles for stall cell.
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Figure 12. - Interfermter film. configurationA; 8 = 1/2; P1 = 600.
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Figure 13. - Veloci.tytriangles for isolated rotor.
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Figure 16. - Veloci.tyinduced from element of vortex sheet.

Figure 17.- Velocity induced from finite-lengthvortex sheet.
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Figure 18.- Velocity induced from two finite vortex sheets at angle @.
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Figure 21.- Pressure coefficient against 13C. Configuration A.
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(a) PI = 55°.

Figure 24. - Schlieren films. ConfigurationA; u = 1; tinw is from right to left.
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Figure 24.- Concluded.

5’



88 NACA TN 4134 .——

.

.

1.6

1.4

1.2

i.o

.8

,6

.4

.2

0

5 CELLS

X ~.~ 27 BLADES
o

0 i5-i7 CELLS

15 CELLS

\ / ,

s842465054586266 70747882

@,,deg

Figure 25. - Velocity of stall propagation against upstresm air angle.

.-

.-

.
Configuration C

—. .—

.

,



NACA TN 4134 89

.

.

.

.

.

A

B

c

D

E

F

Zlz’i .%::

TIMING
~~; & (joNFIGIJ~TloN FREQUENCY,

,
55 1 A 200

63

69

81

1

.

1

1

G 7~ 1/3

A

A

A

A

B

B

200

400

500

500

500

Figure 26.- Hot-wire traces upstream of circular cascade.
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(a) p1=4.6.ko; M1 =0.45. (b) Bl= 51.f5°; Ml =0.50. (c) D1=60.70; MI =0.%.

Figure ~.- Int.erferogramsof steady flow. ConfigurationB;u=l.
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Figure 29.- Photograph of piezoelectric crystal pressure pickup.
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(a) DC =55.8°; (b) PC =59.8°; (c) fIc =63.1°; (d) Pc =66.60; (e) Pc =70.3°;

one cell. two cells. three cells. four ceUls. four cells.

Figure *.- Static pressure at outer well. Coufignration A; upper trace at station FG; lower

trace at station E; time from left to right.
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(a) ~c=56.70j (b) PC = 60.1”; (C) Pc =63.40; (d) PC =67.3°; (e) f3c=71.0°;

one cell. two cells. three cells. four cells. f’oorcellt3.

Figure 39. - Hot-wire traces of C
%

and CeG. Configuration A.
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(a) PC =55.60; (b) FJC =56.10; (c) PC =57.00; (d) 13C =57.70; (e) PC = X.3°;

one cell. one cell. one cell. two cells. two cells.

(f) Pc =61.10; (g) 13c=G1.50; (h) pc =63.10; (i) Bc=64.gO; (d) Bc=G5.bO;

two cel~. three cells. three cells. thr~e cells. three cells.

(k) PC = 6~.90j (z) Pc = 67.3°; (m) PC = 70.70; (n) PC = 74.6°j
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Figure 40.- Hot-wire traces of C
% ‘d CXE“ Conf@tion A.
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